Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 118105    DOI: 10.1088/1674-1056/27/11/118105
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment

Yu Tang(唐语)1, Decong Li(李德聪)1,2, Zhong Chen(陈钟)1, Shuping Deng(邓书平)1, Luqi Sun(孙璐琪)1, Wenting Liu(刘文婷)1, Lanxian Shen(申兰先)1, Shukang Deng(邓书康)1
1 Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Normal University, Kunming 650500, China;
2 Photoelectric Engineering College, Yunnan Open University, Kunming 650500, China
Abstract  

SnSe is considered to be a promising thermoelectric material due to a high ZT value and abundant and non-toxic composition elements. However, the thermal stability is an important issue for commercial application. In particular, thermoelectric materials are in the high temperature for a long time due to the working condition. The present work investigates the thermal stability and oxidation resistance of single crystal SnSe thermoelectric materials. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results show that the internal of SnSe crystal is not easily oxidized, while the x-ray photoelectron spectroscopy (XPS) results indicate that the surface of SnSe is slight oxidized to SnO2. Even if the surface is oxidized, the SnSe crystal still exhibits stable thermoelectric properties. Meanwhile, the crystallization quality of SnSe samples can be improved after the appropriate heat treatment in the air, which is in favor of the carrier mobility and can improve the electrical conduction properties of SnSe. Moreover, the decrease of defect density after heat treatment can further improve the Seebeck coefficient and electrical transport properties of SnSe. The density functional theory (DFT) calculation verifies the important role of defect on the electrical conductivity and electron configuration. In summary, appropriate temperature annealing is an effective way to improve the transmission properties of SnSe single crystal thermoelectric materials.

Keywords:  SnSe      thermal stability      annealing      electrical transport properties      density functional theory  
Received:  03 July 2018      Revised:  10 August 2018      Published:  05 November 2018
PACS:  81.05.Hd (Other semiconductors)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61864012).

Corresponding Authors:  Shukang Deng     E-mail:  skdeng@126.com

Cite this article: 

Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康) Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment 2018 Chin. Phys. B 27 118105

[1] He J, Kanatzidis M G and Dravid V P 2013 Mater. Today 16 166
[2] Kanatzidis M G 2010 Chem. Mater. 22 648
[3] Li J F, Liu W S, Zhao L D, et al. 2010 Npg Asia Mater. 2 152
[4] Minnich A J, Dresselhaus M S, Ren Z F and Chen G 2009 Energy & Environmental Sci. 2 466
[5] Baxter J, Bian Z, Chen G, Danielson D, Dresselhaus M S, Fedorov A G, Fisher T S, Jones C W, Maginn E and Kortshagen U 2009 Energy & Environmental Sci. 2 559
[6] Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123
[7] Popuri S R, Pollet M, Decourt R, Morrison F D, Bennett N S and Bos J W G 2016 J. Mater. Chem. C 4 1685
[8] Zhang X and Zhao L D 2015 J. Materiomics 1 92
[9] Wang F Q, Zhang S, Yu J, et al. 2015 Nanoscale 7 15962
[10] Zhou Y, Zhao L D 2017 Advanced Mater. 29 1702676
[11] Zhou B, Li S, Li W, Li J, Zhang X, Lin S, Chen Z and Pei Y 2017 ACS Appl. Mater. Interfaces 9 34033
[12] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[13] Ding J, Xu B, Lin Y, Nan C and Liu W 2015 New J. Phys. 17 083012
[14] Wei T R, Wu C F, Zhang X, Tan Q, Sun L, Pan Y and Li J F 2015 Phys. Chem. Chem. Phys. Pccp 17 30102
[15] Harman T C, Taylor P J, Walsh M P and Laforge B E 2002 Science 297 2229
[16] Agarwal A, Chaki S H and Lakshminarayana D 2007 Mater. Lett. 61 5188
[17] Car R, Ciucci G and Quartapelle L 2010 Phys. Status Solidi 86 471
[18] Dai X Q, Wang X L, Li W and Wang T X 2015 Chin. Phys. B 24 117308
[19] Tang Y, Wang J, Li D, Deng S, Chen Z, Sun L, Liu W, Shen L and Deng S 2018 J. Alloys & Compd. 748 80
[20] Makinistian L and Albanesi E A 2009 Phys. Status Solidi 246 183
[21] Liu C Y, Miao L, Wang X Y, Wu S H, Zheng Y Y, Deng Z Y, Chen Y L, Wang G W and Zhou X Y 2018 Chin. Phys. B 27 047211
[22] Tang Y, Cheng F, Li D C, Deng S P, Chen Z, Sun L Q, Liu W T, Shen L X and Deng S K 2018 Physica B 539 8
[23] Wei T R, Wu C F, Zhang X, Tan Q, Sun L, Pan Y and Li J F 2015 Phys. Chem. Chem. Phys. 17 30102
[24] Suzuki Y and Nakamura H 2015 Phys. Chem. Chem. Phys. 17 29647
[25] Feng D, Ge Z H, Wu D, Chen Y X, Wu T, Li J and He J 2016 Phys. Chem. Chem. Phys. 18 31821
[26] Huang L, Wu F and Li J 2016 J. Chem. Phys. 144 114708
[27] Leng H Q, Zhou M, Zhao J, Han Y M and Li L F 2016 RSC Adv. 6 9112
[28] Zhao L D, Chang C, Tan G and Kanatzidis M G 2016 Energy & Environmental Sci. 9 3044
[29] Duvjir G, Min T, Thi Ly T, Kim T, Duong A T, Cho S, Rhim S H, Lee J and Kim J 2017 Appl. Phys. Lett. 110 5227
[30] Agarwal A, Vashi M N, Lakshminarayana D and Batra N M 2000 J. Mater. Sci. Mater. Electron. 11 67
[31] Mori H, Usui H, Ochi M and Kuroki K 2017 Phys. Rev. B 96 085113
[32] Yang S D, Si J X, Su Q M and Wu H F2017 Mater. Lett. 193 146
[33] Sava F, Borca C N, Galca A C, Socol G, Grolimund D, Mihai C and Velea A 2017 Phys. Status Solidi 255 1700552
[34] Wu, D, et al. 2017 Nano Energy 35 321
[35] Wang X, Xu J, Liu G Q, et al. 2017 Npg Asia Mater. 9 e426
[36] Sun Y, Wang D and Shuai Z 2017 J. Phys. Chem. C 121 19080
[37] Xiao Y, Chang C, Zhang X, Pei Y, Li F, Yuan B, Gong S and Zhao L D 2016 J. Mater. Sci.:Mater. Electron. 27 2712
[38] Chen Y X, Ge Z H, Yin M, Feng D, Huang X Q, Zhao W and He J 2016 Advanced Funct. Mater. 26 6836
[39] Yan J J, Ke F, Liu C L, Wang L, Wang Q L, Zhang J K, Li G H, Han Y H, Ma Y Z and Gao C X 2016 Phys. Chem. Chem. Phys. 18 5012
[40] Guo J, Jian J K, Liu J, Cao B L, Lei R B, Zhang Z H, Song B and Zhao H Z 2017 Nano Energy 38 569
[41] Duong A T, et al. 2016 Nat Commun. 7 13713
[42] Chang C, et al. 2016 RSC Adv. 6 98216
[43] Peng K, Lu X, Zhan H, Hui S, Tang X, Wang G, Dai J, Uher C, Wang G and Zhou X 2016 Energy & Environmental Sci. 9 454
[44] Zhang Y S, Hao S Q, Zhao L D, Wolverton C and Zeng Z 2016 J. Mater. Chem. A 4 12073
[45] Zhang B, Peng K L, Sha X C, Li A, Zhou X Y, Chen Y H, Deng Q S, Yang D F, Ma E and Han X D2017 Microscopy & Microanalysis 23 173
[46] Li Y, He B, Heremans J P and Zhao J C 2016 J. Alloys Compd. 669 224
[47] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[48] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[49] Blochl P, Blöchl E and Blöchl P E 1994 Phys. Rev. B 50 17953
[50] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[51] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[52] Monkhorst H J 1977 Phys. Rev. B:Condens. Matter 16 1748
[53] Wang J, Liu J, Zhang B, Wan H, Li Z, Ji X, Xu K, Chen C, Zha D and Miao L 2017 Nano Energy 42 98
[54] Zhang X R and Liu Y W 2018 Chin. Phys. B 27 014401
[1] Erratum to "Fabrication of Tl2Ba2CaCu2O8 superconducting films without thallium pellets
Teng-Da Xu(徐腾达), Jian Xing(邢建), Li-Tian Wang(王荔田), Jin-Li Zhang(张金利), Sheng-Hui Zhao(赵生辉), Yang Xiong(熊阳), Xin-Jie Zhao(赵新杰), Lu Ji(季鲁), Xu Zhang(张旭), and Ming He(何明). Chin. Phys. B, 2021, 30(1): 019901.
[2] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[3] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[4] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[5] Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor
He Guan(关赫), Cheng-Yu Jiang(姜成语), Shao-Xi Wang(王少熙). Chin. Phys. B, 2020, 29(9): 096701.
[6] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[7] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[8] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[9] Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩). Chin. Phys. B, 2020, 29(7): 077101.
[10] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[11] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[12] Effect of chemical ordering annealing on superelasticity of Ni-Mn-Ga-Fe ferromagnetic shape memory alloy microwires
Yanfen Liu(刘艳芬), Xuexi Zhang(张学习), Hongxian Shen(沈红先), Jianfei Sun(孙剑飞), Qinan Li(李奇楠), Xiaohua Liu(刘晓华), Jianjun Li(李建军), Weidong Cheng(程伟东). Chin. Phys. B, 2020, 29(5): 056202.
[13] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[14] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[15] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
No Suggested Reading articles found!