Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 117302    DOI: 10.1088/1674-1056/27/11/117302
Special Issue: SPECIAL TOPIC — 80th Anniversary of Northwestern Polytechnical University (NPU)
SPECIAL TOPIC—80th Anniversary of Northwestern Polytechnical University (NPU) Prev   Next  

Coupling-induced spectral splitting for plasmonic sensing with ultra-high figure of merit

Hua Lu(陆华), Yi-Cun Fan(范奕村), Si-Qing Dai(戴思清), Dong Mao(毛东), Fa-Jun Xiao(肖发俊), Peng Li(李鹏), Jian-Lin Zhao(赵建林)
MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  

We investigate a kind of spectral splitting effect in a plasmonic multilayer system, which consists of stacked Al2O3 and SiO2 layers, a thin metal film, and a dielectric prism substrate. The results illustrate that an obvious peak appears in the center of the surface plasmon resonance (SPR)-induced reflection spectral dip in the structure with the SiO2/Al2O3/SiO2 layers. This spectral splitting response can be regarded as an electromagnetically induced transparency (EIT) like effect, which is attributed to the coupling and interference between the SPR on the metal film and guided-mode resonance (GMR) in the Al2O3 layer. The theoretical calculations agree well with the numerical simulations. It is also found that the reflection spectrum will be further split by the introduction of another Al2O3 layer into the multilayer structure. The reintroduced GMR in the Al2O3 layer changes the coupling and interference process between the SPR and GMR field, giving rise to the generation of ultra-narrow reflection dip. Especially, the spectral splitting can facilitate the realization of plasmonic sensors with ultra-high figure of merit (583), which is about 5 times larger than that of traditional SPR sensors. These results will provide a new avenue to the light field manipulation and optical functionalities, especially biochemical and environmental sensing.

Keywords:  surface plasmon polaritons      multilayer      optical sensors  
Received:  21 June 2018      Revised:  07 August 2018      Published:  05 November 2018
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.21.Ac (Multilayers)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303800), the National Natural Science Foundation of China (Grant Nos. 61705186, 11634010, and 11774290), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2017JQ1023), the Technology Foundation for Selected Overseas Chinese Scholar of Shaanxi Province, China (Grant No. 2017007), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102018zy039 and 3102018zy050).

Corresponding Authors:  Hua Lu     E-mail:  hualu@nwpu.edu.cn

Cite this article: 

Hua Lu(陆华), Yi-Cun Fan(范奕村), Si-Qing Dai(戴思清), Dong Mao(毛东), Fa-Jun Xiao(肖发俊), Peng Li(李鹏), Jian-Lin Zhao(赵建林) Coupling-induced spectral splitting for plasmonic sensing with ultra-high figure of merit 2018 Chin. Phys. B 27 117302

[1] Gramotnev D and Bozhevolnyi S 2010 Nat. Photon. 4 83
[2] Lu H, Liu X, Mao D, Wang L and Gong Y 2010 Opt. Express 18 17922
[3] Min C, Shen Z, Shen J, Zhang Y, Fang H, Yuan G, Du L, Zhu S, Lei T and Yuan X 2013 Nat. Commun. 4 2891
[4] Lu H, Mao D, Zeng C, Xiao F, Yang D, Mei T and Zhao J 2018 Opt. Mater. Express 8 1058
[5] Lu H, Gan X, Mao D and Zhao J 2017 Photon. Res. 5 162
[6] Liu H and Lalanne P 2008 Nature 452 728
[7] Yu P, Li J, Tang C, Cheng H, Liu Z, Li Z, Liu Z, Gu C, Li J, Chen S and Tian J 2016 Light Sci. Appl. 5 e16096
[8] Kauranen M and Zayats A V 2012 Nat. Photon. 6 737
[9] Lu H, Liu X, Mao D and Wang G 2012 Opt. Lett. 37 3780
[10] Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C and Giessen H 2010 Nano Lett. 10 1103
[11] Lu H, Gan X, Mao D, Jia B and Zhao J 2018 Sci. Rep. 8 1558
[12] Zhou W, Wang X and Wang J 2015 J. Mod. Opt. 62 1027
[13] Luo W, Cai W, Wu W, Xiang Y, Ren M, Zhang X and Xu J 2016 2D Mater. 3 045001
[14] Lu H, Zeng C, Zhang Q, Liu X, Hossain M, Reineck P and Gu M 2015 Sci. Rep. 5 8443
[15] Liu Z and Aydin K 2016 Nano Lett. 16 3457
[16] Lu H, Gong Y, Mao D, Gan X and Zhao J 2017 Opt. Express 25 5255
[17] Yue Z, Cai B, Wang L, Wang X and Gu M 2016 Sci. Adv. 2 e1501536
[18] Min C, Wang P, Chen C, Deng Y, Lu Y, Ming H, Ning T, Zhou Y and Yang G 2008 Opt. Lett. 33 869
[19] Lu H, Liu X, Gong Y, Mao D and Wang L 2011 Opt. Express 19 12885
[20] Zhang Y, Du Y, Shum C, Cai B, Le N, Chen X, Bradbury G, Duck B, Fell C, Zhu Y and Gu M 2016 Sci. Rep. 6 24972
[21] Yang X, Hu X, Yang H and Gong Q 2017 Nanophoton. 6 365
[22] Dennis B, Haftel M, Czaplewski D, Lopez D, lumberg G and Aksyuk A 2015 Nat. Photon. 9 267
[23] Lu H and Gu M 2017 Appl. Phys. B 123 71
[24] Lu H, Liu X and Mao D 2012 Phys. Rev. A 85 053803
[25] Oulton R, Sorger V, Zentgraf T, Ma R, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
[26] Liedberg B, Nylander C and Lundstroöm I 1983 Sens. Actuators 4 299
[27] Zhang J, Dai S, Ma C, Di J and Zhao J 2017 Opt. Lett. 42 3462
[28] Wang J, Fan C, He J, Ding P, Liang E and Xue Q 2013 Opt. Express 21 2236
[29] Wang J, Liu X, Li L, He J, Fan C, Tian Y, Ding P, Chen D, Xue Q and Liang E 2013 J. Opt. 15 105003
[30] Wang J, Mu K, Ma F, Zang H, Fan C, He J, Liang E and Ding P 2015 Opt. Commun. 338 399
[31] Yuan B, Zhou W and Wang J 2014 J. Opt. 16 105013
[32] Xiao C and Sui S 2000 Sens. Actuators B 66 174
[33] Zhan Y, Lei D Y, Li X and Maier S 2014 Nanoscale 6 4705
[34] Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C and Giessen H 2010 Nano Lett. 10 1103
[35] He X, Wang L, Wang J, Tian X, Jiang J and Geng Z 2013 J. Phys. D:Appl. Phys. 46 365302
[36] Blaber M, Arnold M and Ford M 2009 J. Phys. Chem. C 113 3041
[37] Taflove A and Hagness S 2000 Computational Electrodynamics:The Finite-Difference Time-Domain Method (2nd Edn.) (Boston:Artech House)
[38] Lu H, Liu X, Mao D, Gong Y and Wang G 2011 Opt. Lett. 36 3233
[39] Wang J, Zhang J, Tian Y, Fan C, Mu K, Chen S, Ding P and Liang E 2017 Opt. Express 25 497
[40] Elshorbagy M, Cuadrado A and Alda J 2017 Photon. Res. 5 654
[41] Roh S, Chung T and Lee B 2011 Sensors 11 1565
[42] Wang J, Zhang J, Fan C, Mu K, Liang E and Ding P 2017 Opt. Commun. 383 36
[43] Wang J, Yuan B, Fan C, He J, Ding P, Xue Q and Liang E 2013 Opt. Express 21 25159
[44] Becker J, Truegler A, Jakab A, Hohenester U and Soennichsen C 2010 Plasmonics 5 161
[1] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[2] Analysis of overload-based cascading failure in multilayer spatial networks
Min Zhang(张敏), Xiao-Juan Wang(王小娟), Lei Jin(金磊), Mei Song(宋梅), Zhong-Hua Liao(廖中华). Chin. Phys. B, 2020, 29(9): 096401.
[3] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[4] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[5] Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes
Qian Zhao(赵倩), Xin-Xin He(何鑫鑫), Francois-Jacques Morvan(李文瀚), Guo-Ping Zhao(赵国平), Zhu-Bai Li(李柱柏). Chin. Phys. B, 2020, 29(3): 037501.
[6] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[7] Superconductivity in twisted multilayer graphene: A smoking gun in recent condensed matter physics
Yonghuan Chu(楚永唤), Fangduo Zhu(朱方铎), Lingzhi Wen(温凌志), Wanying Chen(陈婉莹), Qiaoni Chen(陈巧妮), and Tianxing Ma(马天星). Chin. Phys. B, 2020, 29(11): 117401.
[8] Structure and tribological properties of Si/a-C:H(Ag) multilayer film in stimulated body fluid
Yan-Xia Wu(吴艳霞), Yun-Lin Liu(刘云琳), Ying Liu(刘颖), Bing Zhou(周兵), Hong-Jun Hei(黑鸿君), Yong Ma(马永), Sheng-Wang Yu(于盛旺), and Yu-Cheng Wu(吴玉程). Chin. Phys. B, 2020, 29(11): 116101.
[9] Properties of metal-insulator-metal waveguide loop reflector
Hu Long(龙虎), Xuan-Ke Zeng(曾选科), Yi Cai(蔡懿), Xiao-Wei Lu(陆小微), Hong-Yi Chen(陈红艺), Shi-Xiang Xu(徐世祥), Jing-Zhen Li(李景镇). Chin. Phys. B, 2019, 28(9): 094215.
[10] Controllable fabrication of self-organized nano-multilayers in copper-carbon films
Wei-Qi Wang(王伟奇), Li Ji(吉利), Hong-Xuan Li(李红轩), Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), Jian-Min Chen(陈建敏). Chin. Phys. B, 2019, 28(3): 036802.
[11] Laser-induced damage threshold in HfO2/SiO2 multilayer films irradiated by β-ray
Mei-Hua Fang(方美华), Peng-Yu Tian(田鹏宇), Mao-Dong Zhu(朱茂东), Hong-Ji Qi(齐红基), Tao Fei(费涛), Jin-Peng Lv(吕金鹏), Hui-Ping Liu(刘会平). Chin. Phys. B, 2019, 28(2): 024215.
[12] Nodes and layers PageRank centrality for multilayer networks
Lai-Shui Lv(吕来水), Kun Zhang(张琨), Ting Zhang(张婷), Meng-Yue Ma(麻孟越). Chin. Phys. B, 2019, 28(2): 020501.
[13] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[14] Electro-optical dual modulation on resistive switching behavior in BaTiO3/BiFeO3/TiO2 heterojunction
Jia-Jia Zhao(赵佳佳), Jin-Shuai Zhang(张金帅), Feng Zhang(张锋), Wei Wang(王威), Hai-Rong He(何海蓉), Wang-Yang Cai(蔡汪洋), Jin Wang(王进). Chin. Phys. B, 2019, 28(12): 126801.
[15] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
No Suggested Reading articles found!