Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 117302    DOI: 10.1088/1674-1056/27/11/117302
Special Issue: SPECIAL TOPIC — 80th Anniversary of Northwestern Polytechnical University (NPU)
SPECIAL TOPIC—80th Anniversary of Northwestern Polytechnical University (NPU) Prev   Next  

Coupling-induced spectral splitting for plasmonic sensing with ultra-high figure of merit

Hua Lu(陆华), Yi-Cun Fan(范奕村), Si-Qing Dai(戴思清), Dong Mao(毛东), Fa-Jun Xiao(肖发俊), Peng Li(李鹏), Jian-Lin Zhao(赵建林)
MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  

We investigate a kind of spectral splitting effect in a plasmonic multilayer system, which consists of stacked Al2O3 and SiO2 layers, a thin metal film, and a dielectric prism substrate. The results illustrate that an obvious peak appears in the center of the surface plasmon resonance (SPR)-induced reflection spectral dip in the structure with the SiO2/Al2O3/SiO2 layers. This spectral splitting response can be regarded as an electromagnetically induced transparency (EIT) like effect, which is attributed to the coupling and interference between the SPR on the metal film and guided-mode resonance (GMR) in the Al2O3 layer. The theoretical calculations agree well with the numerical simulations. It is also found that the reflection spectrum will be further split by the introduction of another Al2O3 layer into the multilayer structure. The reintroduced GMR in the Al2O3 layer changes the coupling and interference process between the SPR and GMR field, giving rise to the generation of ultra-narrow reflection dip. Especially, the spectral splitting can facilitate the realization of plasmonic sensors with ultra-high figure of merit (583), which is about 5 times larger than that of traditional SPR sensors. These results will provide a new avenue to the light field manipulation and optical functionalities, especially biochemical and environmental sensing.

Keywords:  surface plasmon polaritons      multilayer      optical sensors  
Received:  21 June 2018      Revised:  07 August 2018      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.21.Ac (Multilayers)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303800), the National Natural Science Foundation of China (Grant Nos. 61705186, 11634010, and 11774290), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2017JQ1023), the Technology Foundation for Selected Overseas Chinese Scholar of Shaanxi Province, China (Grant No. 2017007), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102018zy039 and 3102018zy050).

Corresponding Authors:  Hua Lu     E-mail:  hualu@nwpu.edu.cn

Cite this article: 

Hua Lu(陆华), Yi-Cun Fan(范奕村), Si-Qing Dai(戴思清), Dong Mao(毛东), Fa-Jun Xiao(肖发俊), Peng Li(李鹏), Jian-Lin Zhao(赵建林) Coupling-induced spectral splitting for plasmonic sensing with ultra-high figure of merit 2018 Chin. Phys. B 27 117302

[1] Gramotnev D and Bozhevolnyi S 2010 Nat. Photon. 4 83
[2] Lu H, Liu X, Mao D, Wang L and Gong Y 2010 Opt. Express 18 17922
[3] Min C, Shen Z, Shen J, Zhang Y, Fang H, Yuan G, Du L, Zhu S, Lei T and Yuan X 2013 Nat. Commun. 4 2891
[4] Lu H, Mao D, Zeng C, Xiao F, Yang D, Mei T and Zhao J 2018 Opt. Mater. Express 8 1058
[5] Lu H, Gan X, Mao D and Zhao J 2017 Photon. Res. 5 162
[6] Liu H and Lalanne P 2008 Nature 452 728
[7] Yu P, Li J, Tang C, Cheng H, Liu Z, Li Z, Liu Z, Gu C, Li J, Chen S and Tian J 2016 Light Sci. Appl. 5 e16096
[8] Kauranen M and Zayats A V 2012 Nat. Photon. 6 737
[9] Lu H, Liu X, Mao D and Wang G 2012 Opt. Lett. 37 3780
[10] Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C and Giessen H 2010 Nano Lett. 10 1103
[11] Lu H, Gan X, Mao D, Jia B and Zhao J 2018 Sci. Rep. 8 1558
[12] Zhou W, Wang X and Wang J 2015 J. Mod. Opt. 62 1027
[13] Luo W, Cai W, Wu W, Xiang Y, Ren M, Zhang X and Xu J 2016 2D Mater. 3 045001
[14] Lu H, Zeng C, Zhang Q, Liu X, Hossain M, Reineck P and Gu M 2015 Sci. Rep. 5 8443
[15] Liu Z and Aydin K 2016 Nano Lett. 16 3457
[16] Lu H, Gong Y, Mao D, Gan X and Zhao J 2017 Opt. Express 25 5255
[17] Yue Z, Cai B, Wang L, Wang X and Gu M 2016 Sci. Adv. 2 e1501536
[18] Min C, Wang P, Chen C, Deng Y, Lu Y, Ming H, Ning T, Zhou Y and Yang G 2008 Opt. Lett. 33 869
[19] Lu H, Liu X, Gong Y, Mao D and Wang L 2011 Opt. Express 19 12885
[20] Zhang Y, Du Y, Shum C, Cai B, Le N, Chen X, Bradbury G, Duck B, Fell C, Zhu Y and Gu M 2016 Sci. Rep. 6 24972
[21] Yang X, Hu X, Yang H and Gong Q 2017 Nanophoton. 6 365
[22] Dennis B, Haftel M, Czaplewski D, Lopez D, lumberg G and Aksyuk A 2015 Nat. Photon. 9 267
[23] Lu H and Gu M 2017 Appl. Phys. B 123 71
[24] Lu H, Liu X and Mao D 2012 Phys. Rev. A 85 053803
[25] Oulton R, Sorger V, Zentgraf T, Ma R, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
[26] Liedberg B, Nylander C and Lundstroöm I 1983 Sens. Actuators 4 299
[27] Zhang J, Dai S, Ma C, Di J and Zhao J 2017 Opt. Lett. 42 3462
[28] Wang J, Fan C, He J, Ding P, Liang E and Xue Q 2013 Opt. Express 21 2236
[29] Wang J, Liu X, Li L, He J, Fan C, Tian Y, Ding P, Chen D, Xue Q and Liang E 2013 J. Opt. 15 105003
[30] Wang J, Mu K, Ma F, Zang H, Fan C, He J, Liang E and Ding P 2015 Opt. Commun. 338 399
[31] Yuan B, Zhou W and Wang J 2014 J. Opt. 16 105013
[32] Xiao C and Sui S 2000 Sens. Actuators B 66 174
[33] Zhan Y, Lei D Y, Li X and Maier S 2014 Nanoscale 6 4705
[34] Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C and Giessen H 2010 Nano Lett. 10 1103
[35] He X, Wang L, Wang J, Tian X, Jiang J and Geng Z 2013 J. Phys. D:Appl. Phys. 46 365302
[36] Blaber M, Arnold M and Ford M 2009 J. Phys. Chem. C 113 3041
[37] Taflove A and Hagness S 2000 Computational Electrodynamics:The Finite-Difference Time-Domain Method (2nd Edn.) (Boston:Artech House)
[38] Lu H, Liu X, Mao D, Gong Y and Wang G 2011 Opt. Lett. 36 3233
[39] Wang J, Zhang J, Tian Y, Fan C, Mu K, Chen S, Ding P and Liang E 2017 Opt. Express 25 497
[40] Elshorbagy M, Cuadrado A and Alda J 2017 Photon. Res. 5 654
[41] Roh S, Chung T and Lee B 2011 Sensors 11 1565
[42] Wang J, Zhang J, Fan C, Mu K, Liang E and Ding P 2017 Opt. Commun. 383 36
[43] Wang J, Yuan B, Fan C, He J, Ding P, Xue Q and Liang E 2013 Opt. Express 21 25159
[44] Becker J, Truegler A, Jakab A, Hohenester U and Soennichsen C 2010 Plasmonics 5 161
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[4] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[5] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[6] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[7] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[8] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[9] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[10] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[11] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[12] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[13] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[14] Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers
Xiao-Bo He(何小波), Hua-Tian Hu(胡华天), Ji-Bo Tang(唐继博), Guo-Zhen Zhang(张国桢), Xue Chen(陈雪), Jun-Jun Shi(石俊俊), Zhen-Wei Ou(欧振伟), Zhi-Feng Shi(史志锋), Shun-Ping Zhang(张顺平), Chang Liu(刘昌), and Hong-Xing Xu(徐红星). Chin. Phys. B, 2022, 31(1): 017803.
[15] Ultrafast structural dynamics using time-resolved x-ray diffraction driven by relativistic laser pulses
Chang-Qing Zhu(朱常青), Jun-Hao Tan(谭军豪), Yu-Hang He(何雨航), Jin-Guang Wang(王进光), Yi-Fei Li(李毅飞), Xin Lu(鲁欣), Ying-Jun Li(李英骏), Jie Chen(陈洁), Li-Ming Chen(陈黎明), and Jie Zhang(张杰). Chin. Phys. B, 2021, 30(9): 098701.
No Suggested Reading articles found!