Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 117301    DOI: 10.1088/1674-1056/27/11/117301
Special Issue: SPECIAL TOPIC — 80th Anniversary of Northwestern Polytechnical University (NPU)
SPECIAL TOPIC—80th Anniversary of Northwestern Polytechnical University (NPU) Prev   Next  

Subwavelength asymmetric Au-VO2 nanodisk dimer for switchable directional scattering

Han-Mou Zhang(张汉谋), Wu-Yun Shang(尚武云), Hua Lu(陆华), Fa-Jun Xiao(肖发俊), Jian-Lin Zhao(赵建林)
MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an 710129, China
Abstract  

We propose an asymmetric Au-VO2 nanodisk dimer for realizing a switchable directional scattering. Specifically, the directional scattering can be triggered on/off through controlling the phase transition of the VO2 nanodisk from metallic to semiconductor state. More strikingly, an obvious directional scattering with the directivity of~40 dB is achieved under the metallic state of VO2 nanodisk. This tunable directional scattering is further explained with an interference model where the Au and VO2 nanodisks are treated as two weakly interacting electric dipoles. The phase transition controlled scattering patterns of asymmetric Au-VO2 nanodisk dimer are then well interpreted from the phase difference between these two dipoles.

Keywords:  localized surface plasmon resonance      directional scattering      vanadium dioxide  
Received:  14 July 2018      Revised:  07 September 2018      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.70.-a (Optical materials)  
  42.25.Fx (Diffraction and scattering)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303800), the National Natural Science Foundation of China (Grant Nos. 11634010, 61675170, and 11874050), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2017JM6022), and the Fundamental Research Funds for the Central Universities, China (Grant No. 3102017zy017).

Corresponding Authors:  Fa-Jun Xiao, Jian-Lin Zhao     E-mail:  fjxiao@nwpu.edu.cn;jlzhao@nwpu.edu.cn

Cite this article: 

Han-Mou Zhang(张汉谋), Wu-Yun Shang(尚武云), Hua Lu(陆华), Fa-Jun Xiao(肖发俊), Jian-Lin Zhao(赵建林) Subwavelength asymmetric Au-VO2 nanodisk dimer for switchable directional scattering 2018 Chin. Phys. B 27 117301

[1] Gramotnev D K and Bozhevolni S I 2010 Nat. Photon. 4 83
[2] Svedendahl M, Chen S, Dmitriev A and Käll M 2009 Nano Lett. 9 4428
[3] Park J, Estrada A, Sharp K, Sang K, Schwartz J A, Smith D K, Coleman C, Payne J D, Korgel B A, Dunn A K and Tunnell J W 2008 Opt. Express 16 1590
[4] Howes P D, Rana S and Stevens M M 2014 Chem. Soc. Rev. 43 3835
[5] Li K R, Stockman M I and Bergman D J 2003 Phys. Rev. Lett. 91 227402
[6] Shang W Y, Xiao F J, Zhu W R, He H S, Premaratne M, Mei T and Zhao J L 2017 Sci. Rep. 7 1049
[7] Xiao F J, Zhu W R, Shang W Y, Mei T, Premaratne M and Zhao J L 2015 Opt. Express 23 3236
[8] Shang W Y, Xiao F J, Han L, Premaratne M, Mei T and Zhao J L 2018 J. Phys.:Condens. Matter 30 064004
[9] Celebrano M, Wu X F, Baselli M, Großmann S, Biagioni P, Locatelli A, Angelis D C, Cerullo G, Osellame R, Hecht B, Duó L, Ciccacci F and Finazzi M 2015 Nat. Nanotech. 10 412
[10] Xiao F J, Shang W Y, Zhu W R, Han L, Premaratne M, Mei T and Zhao J L 2018 Photon. Res. 6 157
[11] Pompa P P, Martiradonna L, Torre A D, Sala F D, Manna L, De Vittorio M, Calabi F, Cingolani R and Rinaldi R 2006 Nat. Nanotech. 1 126
[12] Aioub M and El-Sayed M A 2016 J. Am. Chem. Soc. 138 1258
[13] Prodan E and Nordlander P 2004 J. Chem. Phys. 120 5444
[14] Kim S, Jin J, Kim Y J, Park I Y, Kim Y and Kim S W 2008 Nature 453 757
[15] Yang L K, Wang H C, Fang Y and Li Z P 2016 ACS Nano 10 1580
[16] Lassiter J B, Sobhani H, Fan J A, Kundu J, Capasso F, Nordlander P and Halas N J 2010 Nano Lett. 10 3184
[17] Xiao F J, Zhu W R, Premaratne M and Zhao J L 2014 Opt. Express 22 2132
[18] Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R and van Hulst N F 2010 Science 329 930
[19] Valuckas V, Paniagua-Dominguez R, Fu Y H, Luk'yanchuk B and Kuznetsov A I 2017 Appl. Phys. Lett. 110 091108
[20] Evlyukhin A B, Bozhevolnyi S I, Pors A, Nielsen M G, Radko I P, Willatzen M and Albrektsen O 2010 Nano Lett. 10 4571
[21] Atwater H A and Polman A 2010 Nat. Mater. 9 205
[22] Ding W, Chen Y H and Li Z Y 2014 Chin. Phys. B 23 037301
[23] Tribelsky M I, Geffrin J M, Litman A, Eyraud C and Moreno F 2016 Phys. Rev. B 94 121110
[24] Coenen T, Vesssur E J, Polman A, Koenderink A F 2011 Nano Lett. 11 3779
[25] Hu D J, Zhang Z Y and Du J L 2015 Chin. Phys. B 24 104202
[26] Vercruysse D, Sonnefraud Y, Verellen N, Fuchs F B, Di Martino G, Lagae L, Moshchalkov V V, Maier S A, Van Dorpe P 2013 Nano Lett. 13 3843
[27] Shegai T, Chen S, Miljkovic V D, Zengin G, Johansson P and Käll M 2011 Nat. Commun. 2 481
[28] Liu W, Zhang J F, Lei B, Ma H T, Xie W K and Hu H J 2014 Opt. Express 22 16178
[29] Tian J Y, Li Q, Yang Y Q and Qiu M 2016 Nanoscale 8 4047
[30] Cavalleri A, Tóth C, Siders C W, Squier J A, Ráksi F, Forget P and Kieffer J C 2001 Phys. Rev. Lett. 87 237401
[31] Abb M, Albella P, Aizpurua J and Muskens O L 2011 Nano Lett. 11 2457
[32] Kats M A, Blanchard R, Genevet P, Yang Z, Qazilbash M M, Basov D, Ramanathan S and Capasso F 2013 Opt. Lett. 38 368
[33] Paik T, Hong S H, Gaulding E A, Caglayan H, Gordon T R, Engheta N, Kagan C R and Murray C B 2014 ACS Nano 8 797
[34] Michel A K U, Zalden P, Chigrin D N, Wuttig M, Lindenberg A M and Taubner T 2014 ACS Photon. 1 833
[35] Zhou H J, Cao X, Jiang M, Bao S H and Jin P 2014 Laser Photon. Rev. 8 617
[36] Liu H W, Lu J P and Wang X R 2018 Nanotechnology 29 024002
[37] Dicken M J, Aydin K, Pryce I M, Sweatlock L A, Boyd E M, Walavalkar S, Ma J and Atwater H A 2009 Opt. Express 17 18330
[38] Ye J and Dorpea P V 2012 Nanoscale 4 7205
[39] Kaplan G, Aydin K and Scheuer J 2015 Opt. Mater. Express 5 2513
[40] Kim S J, Yun H, Park K, Hong J, Yun J G, Lee K, Kim J, Jeong S J, Mun S E, Sung J, Lee Y W and Lee B 2017 Sci. Rep. 7 43723
[41] Rahimi E and Sendur K 2017 Opt. Commun. 392 109
[42] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[43] Verleur H W, Barker A S and Berglund C N 1968 Phys. Rev. 172 788
[44] Khan Y, Li A R, Chang L, Li L D and Guo L 2018 Sensors Actuat. B-Chem. 255 1298
[45] Lopez R, Haynes T E, Boatner L A, Feldman L C and Haglund R F 2002 Opt. Lett. 27 1327
[46] Kumar S, Strachan J P, Pickett M D, Bratkovsky A, Nishi Y and Williams R S 2014 Adv. Mater. 26 7505
[47] Ke Y J, Wen X L, Zhao D Y, Che R C, Xiong Q H and Long Y 2017 ACS Nano 11 7542
[48] Lu G W, Wang Y W, Chou R Y, Shen H M, He Y B, Cheng Y Q and Gong Q H 2015 Laser Photon. Rev. 9 530
[49] Pakizeh T and Käll M 2009 Nano Lett. 9 2343
[50] Shegai T, Miljković V D, Bao K, Xu H X, Nordlander P, Johansson P and Käll M 2011 Nano Lett. 11 706
[1] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[2] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[3] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[4] Wideband switchable dual-functional terahertz polarization converter based on vanadium dioxide-assisted metasurface
De-Xian Yan(严德贤), Qin-Yin Feng(封覃银), Zi-Wei Yuan(袁紫微), Miao Meng(孟淼), Xiang-Jun Li(李向军), Guo-Hua Qiu(裘国华), and Ji-Ning Li(李吉宁). Chin. Phys. B, 2022, 31(1): 014211.
[5] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[6] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[7] Manipulating metal-insulator transitions of VO2 films via embedding Ag nanonet arrays
Zhangyang Zhou(周章洋), Jia Yang(杨佳), Yi Liu(刘艺), Zhipeng Gao(高志鹏), Linhong Cao(曹林洪), Leiming Fang(房雷鸣), Hongliang He(贺红亮), and Zhengwei Xiong(熊政伟). Chin. Phys. B, 2021, 30(12): 126803.
[8] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[9] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[10] Multi-functional vanadium dioxide integrated metamaterial for terahertz wave manipulation
Jian-Xing Zhao(赵建行), Jian-Lin Song(宋建林), Yao Zhou(周姚), Rui-Long Zhao(赵瑞龙), Yi-Chao Liu(刘艺超), Jian-Hong Zhou(周见红). Chin. Phys. B, 2020, 29(9): 094205.
[11] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[12] Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave
Tong Li(李彤), Fang-Rong Hu(胡放荣), Yi-Xian Qian(钱义先), Jing Xiao(肖靖), Long-Hui Zhang(张隆辉), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广). Chin. Phys. B, 2020, 29(2): 024203.
[13] Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich
Shuai Zhao(赵帅), Fangrong Hu(胡放荣), Xinlong Xu(徐新龙), Mingzhu Jiang(江明珠), Wentao Zhang(张文涛), Shan Yin(银珊), Wenying Jiang(姜文英). Chin. Phys. B, 2019, 28(5): 054203.
[14] Selective enhancement of green upconversion luminescence of Er-Yb: NaYF4 by surface plasmon resonance of W18O49 nanoflowers and applications in temperature sensing
Ang Li(李昂), Jin-Lei Wu(吴金磊), Xue-Song Xu(许雪松), Yang Liu(刘洋), Ya-Nan Bao(包亚男), Bin Dong(董斌). Chin. Phys. B, 2018, 27(9): 097301.
[15] Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications
Wen Chen(陈文), Huatian Hu(胡华天), Wei Jiang(姜巍), Yuhao Xu(徐宇浩), Shunping Zhang(张顺平), Hongxing Xu(徐红星). Chin. Phys. B, 2018, 27(10): 107403.
No Suggested Reading articles found!