Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 013701    DOI: 10.1088/1674-1056/27/1/013701
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Comparison of the sensitivities for atom interferometers in two different operation methods

Xiao-Chun Duan(段小春)1, De-Kai Mao(毛德凯)1, Xiao-Bing Deng(邓小兵)1, Min-Kang Zhou(周敏康)1, Cheng-Gang Shao(邵成刚)1, Zhu Zhu(祝竺)2, Zhong-Kun Hu(胡忠坤)1
1 MOE Key Laboratory of Fundamental Physical Quantities Measurements, Hubei Key Laboratory of Gravitation and Quantum Physics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
2 Shanghai Institute of Satellite Engineering, Shanghai 201109, China
Abstract  

We investigated the sensitivities of atom interferometers in the usual fringe-scanning method (FSM) versus the fringe-locking method (FLM). The theoretical analysis shows that for typical noises in atom interferometers, the FSM will degrade the sensitivity while the FLM does not. The sensitivity-improvement factor of the FLM over the FSM depends on the type of noises, which is validated by numerical simulations. The detailed quantitative analysis on this fundamental issue is presented, and our analysis is readily extendable to other kinds of noises as well as other fringe shapes in addition to a cosine one.

Keywords:  atom interferometer      fringe locking      fringe scanning      sensitivity  
Received:  03 August 2017      Revised:  20 September 2017      Accepted manuscript online: 
PACS:  37.25.+k (Atom interferometry techniques)  
  07.05.Kf (Data analysis: algorithms and implementation; data management)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 41127002, 11574099, 41504034, and 11474115) and the National Basic Research Program of China (Grant No. 2010CB832806).

Corresponding Authors:  Zhong-Kun Hu     E-mail:  zkhu@hust.edu.cn

Cite this article: 

Xiao-Chun Duan(段小春), De-Kai Mao(毛德凯), Xiao-Bing Deng(邓小兵), Min-Kang Zhou(周敏康), Cheng-Gang Shao(邵成刚), Zhu Zhu(祝竺), Zhong-Kun Hu(胡忠坤) Comparison of the sensitivities for atom interferometers in two different operation methods 2018 Chin. Phys. B 27 013701

[1] Weiss D S, Young B C and Chu S 1994 Appl. Phys. B 59 217
[2] Wicht A, Hensley J M, Sarajlic E and Chu S 2002 Phys. Scripta T102 82
[3] Cladé P, de Mirandes E, Cadoret M, et al. 2006 Phys. Rev. Lett. 96 033001
[4] Müller H, Chiow S W, Long Q, Vo C and Chu S 2006 Appl. Phys. B 84 633
[5] Cadoret M, de Mirandes E, Cladé P, et al. 2008 Phys. Rev. Lett. 101 230801
[6] Fixler J B, Foster G T, McGuirk J M and Kasevich M A 2007 Science 315 74
[7] Lamporesi G, Bertoldi A, Cacciapuoti L, Prevedelli M and Tino G M 2008 Phys. Rev. Lett. 100 050801
[8] Stuhler J, Fattori M, Petelski T and Tino G M 2003 J. Opt. B: Quantum Semiclass. Opt. 5 S75
[9] Bertoldi A, Lamporesi G, Cacciapuoti L, et al. 2006 Eur. Phys. J. D 40 271
[10] Sorrentino F, Lien Y H, Rosi G, Cacciapuoti L, Prevedelli M and Tino G M 2010 New J. Phys. 12 095009
[11] Fattori M, Lamporesi G, Petelski T, Stuhler J and Tino G M 2003 Phys. Lett. A 318 184
[12] Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M and Tino T M 2014 Nature 510 518
[13] Dimopoulos S, Graham P W, Hogan J M, Kasevich M A and Rajendran S 2008 Phys. Rev. D 78 122002
[14] Bonnin A, Zahzam N, Bidel Y and Bresson A 2013 Phys. Rev. A 88 043615
[15] Gaaloul N, Ahlers H, Schulze T A, et al. 2010 Acta Astronautica 67 1059
[16] Dimopoulos S, Graham P W, Hogan J M, Kasevich M A and Rajendran S 2009 Phys. Lett. B 678 37
[17] Tarallo M G, Mazzoni T, Poli N, Sutyrin D V, Zhang X and Tino G M 2014 Phys. Rev. Lett. 113 023005
[18] Clairon A, Laurent P, Santarelli G, et al. 1995 IEEE Trans. Instrum. 44 128
[19] Levi F, Lorini L, Calonico D and Godone A 2004 IEEE Trans. Ultrason. Ferroelectrics Freq. Control 51 1216
[20] Wynands R and Weyers S 2005 Metrologia 42 S64
[21] Vian C, Rosenbusch P, Marion H, et al. 2005 IEEE Trans. Instrum. Meas. 54 833
[22] Szymaniec K, Park S E, Marra G and Chalupczak W 2010 Metrologia 47 363
[23] Gerginov V, Nemitz N, Weyers S, Schröder R, Griebsch D and Wynands R 2010 Metrologia 47 65
[24] Heavner T P, Donley E A, Levi F, et al. 2014 Metrologia 51 174
[25] Zhou M K, Hu Z K, Duan X C, et al. 2010 Phys. Rev. A 82 061602
[26] Hu Z K, Duan X C, Zhou M K, et al. 2011 Phys. Rev. A 84 013620
[27] Peters A, Chung K Y and Chu S 1999 Nature 400 849
[28] Peters A, Chung K Y and Chu S 2001 Metrologia 38 25
[29] Le Gouüt J, Mehlstäubler T E, Kim J, Merlet S, Clairon A, Landragin A and Dos Santos F P 2008 Appl. Phys. B 92 133
[30] Hauth M, Freier C, Schkolnik V, Senger A, Schmidt M and Peters A 2013 Appl. Phys. B 113 49
[31] Müller H, Chiow S W, Herrmann S and Chu S 2008 Phys. Rev. Lett. 100 031101
[32] Zhou M K, Pelle B, Hilico A and dos Santos F P 2013 Phys. Rev. A 88 013604
[33] Bidel Y, Carraz O, Charriére R, Cadoret M and Zahzam N 2013 Appl. Phys. Lett. 102 144107
[34] Altin P A, Johnsson M T, Negnevitsky V, et al. 2013 New J. Phys. 15 023009
[35] Zhou M K, Hu Z K, Duan X C, et al. 2012 Phys. Rev. A 86 043630
[36] Hu Z K, Sun B L, Duan X C, et al. 2013 Phys. Rev. A 88 043610
[37] Cheinet P, Dos Santos F P, Petelski T, et al. 2006 Appl. Phys. B 84 643
[38] Merlet S, Le Gouüt J, Bodart Q, et al. 2009 Metrologia 46 87
[39] Bevington P R and Robinson D K 2003 Data Reduction and Error Analysis for the Physical Sciences (3rd edn.) (New York: McGraw-Hill) p. 102
[40] Gauguet A, Canuel B, Lévéque T, Chaibi W and Landragin A 2009 Phys. Rev. A 80 063604
[41] Itano W M, Bergquist J C, Bollinger J J, et al. 2009 Phys. Rev. A 47 3554
[42] Dos Santos F P 2015 Phys. Rev. A 91 063615
[43] Kellogg J R, Yu N, Kohel J M, Thompson R J, Aveline D C and Maleki L 2007 J. Mod. Opt. 54 2533
[44] Lan S Y, Kuan P C, Estey B, Haslinger P and Muller H 2012 Phys. Rev. Lett. 108 090402
[45] Duan X C, Zhou M K, Mao D K, et al. 2014 Phys. Rev. A 90 023617
[46] Foster G T, Fixler J B, McGuirk J M and Kasevich M A 2002 Opt. Lett. 27 951
[47] Stockton J K, Wu X and Kasevich M A 2007 Phys. Rev. A 76 033613
[48] Varoquaux G, Nyman R A, Geiger R, et al. 2009 New J. Phys. 11 113010
[49] Tarallo M G, Mazzoni T, Poli N, et al. 2014 Phys. Rev. Lett. 113 023005
[1] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[2] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[3] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[4] Movable precision gravimeters based on cold atom interferometry
Jiong-Yang Zhang(张炯阳), Le-Le Chen(陈乐乐), Yuan Cheng(程源), Qin Luo(罗覃), Yu-Biao Shu(舒玉彪), Xiao-Chun Duan(段小春), Min-Kang Zhou(周敏康), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2020, 29(9): 093702.
[5] Suppression of Coriolis error in weak equivalence principle test using 85Rb-87Rb dual-species atom interferometer
Wei-Tao Duan(段维涛), Chuan He(何川), Si-Tong Yan(闫思彤), Yu-Hang Ji(冀宇航), Lin Zhou(周林), Xi Chen(陈曦), Jin Wang(王谨), Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2020, 29(7): 070305.
[6] Entrainment range affected by the difference in sensitivity to light-information between two groups of SCN neurons
Bao Zhu(朱宝), Jian Zhou(周建), Mengting Jia(贾梦婷), Huijie Yang(杨会杰), Changgui Gu(顾长贵). Chin. Phys. B, 2020, 29(6): 068702.
[7] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[8] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
[9] Interference properties of a trapped atom interferometer in two asymmetric optical dipole traps
Li-Yong Wang(王立勇), Xiao Li(李潇), Kun-Peng Wang(王坤鹏), Yin-Xue Zhao(赵吟雪), Ke Di(邸克), Jia-Jia Du(杜佳佳), and Jian-Gong Hu(胡建功). Chin. Phys. B, 2020, 29(12): 123701.
[10] Systematic error suppression scheme of the weak equivalence principle test by dual atom interferometers in space based on spectral correlation
Jian-Gong Hu(胡建功), Xi Chen(陈曦), Li-Yong Wang(王立勇), Qing-Hong Liao(廖庆洪), and Qing-Nian Wang(汪庆年)$. Chin. Phys. B, 2020, 29(11): 110305.
[11] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[12] Broadband visible light absorber based on ultrathin semiconductor nanostructures
Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英). Chin. Phys. B, 2020, 29(1): 014201.
[13] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[14] Realization of THz dualband absorber with periodic cross-shaped graphene metamaterials
Chunzhen Fan(范春珍), Yuchen Tian(田雨宸), Peiwen Ren(任佩雯), Wei Jia(贾微). Chin. Phys. B, 2019, 28(7): 076105.
[15] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
No Suggested Reading articles found!