Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 010305    DOI: 10.1088/1674-1056/27/1/010305
GENERAL Prev   Next  

Improved quantum randomness amplification with finite number of untrusted devices based on a novel extractor

Ming-Feng Xu(徐明峰), Wei Pan(潘炜), Lian-Shan Yan(闫连山), Bin Luo(罗斌), Xi-Hua Zou(邹喜华), Peng-Hua Mu(穆鹏华), Li-Yue Zhang(张力月)
Center for Information Photonics and Communications, Southwest Jiaotong University, Chengdu 611756, China
Abstract  Quantum randomness amplification protocols have increasingly attracted attention for their fantastic ability to amplify weak randomness to almost ideal randomness by utilizing quantum systems. Recently, a realistic noise-tolerant randomness amplification protocol using a finite number of untrusted devices was proposed. The protocol has the composable security against non-signalling eavesdroppers and could produce a single bit of randomness from weak randomness sources, which is certified by the violation of certain Bell inequalities. However, the protocol has a non-ignorable limitation on the min-entropy of independent sources. In this paper, we further develop the randomness amplification method and present a novel quantum randomness amplification protocol based on an explicit non-malleable two independent-source randomness extractor, which could remarkably reduce the above-mentioned specific limitation. Moreover, the composable security of our improved protocol is also proposed. Our results could significantly expand the application range for practical quantum randomness amplification, and provide a new insight on the practical design method for randomness extraction.
Keywords:  quantum random number generation      quantum randomness amplification      quantum key distribution  
Received:  21 August 2017      Revised:  07 October 2017      Published:  05 January 2018
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61775185).
Corresponding Authors:  Ming-Feng Xu     E-mail:  xmfswjtu@126.com

Cite this article: 

Ming-Feng Xu(徐明峰), Wei Pan(潘炜), Lian-Shan Yan(闫连山), Bin Luo(罗斌), Xi-Hua Zou(邹喜华), Peng-Hua Mu(穆鹏华), Li-Yue Zhang(张力月) Improved quantum randomness amplification with finite number of untrusted devices based on a novel extractor 2018 Chin. Phys. B 27 010305

[1] Herrero-Collantes M and Garcia-Escartin J C 2017 Rev. Mod. Phys. 89 015004
[2] Quan D X, Zhu C H, Liu S Q and Pei C X 2015 Chin. Phys. B 24 050309
[3] Ma H Q, Zhu W, Wei K J, Li R X and Liu H W 2016 Chin. Phys. B 25 050304
[4] Li Y M, Wang X Y, Bai Z L, Liu W Y, Yang S S and Peng K C 2017 Chin. Phys. B 26 040303
[5] Bucci M, Germani L, Luzzi R, Trifiletti and Varanonuovo M 2003 IEEE Tran. Comput. 52 403
[6] Schmidt H 1970 J. Appl. Phys. 41 462
[7] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K and Davis P 2016 Nat. Photon. 2 728
[8] Acin A and Masanes L 2016 Nature 540 213
[9] Colbeck R and Renner R 2012 Nat. Phys. 8 450
[10] Pironio S, Acin A, Massar S, Boyer de la Giroday A, Matsukevich D N, Maunz P, Olmschenk S, Hayes D, Luo L, Manning T A and Monroe C 2010 Nature 464 1021
[11] Santha M and Vazirani U V 1984 IEEE 25th Annual Symposium on Foundations of Computer Science 434
[12] Brandao F G S L, Ramanathan R, Grudka A, Horodecki K, Horodecki M, Horodecki P, Szarek T and Wojewodka H 2016 Nat. Commun. 7 11345
[13] Gallego R, Masanes L, de la Torre G, Dhara C, Aolita L and Acin A 2013 Nat. Commun. 4 2654
[14] Grudka A, Horodecki K, Horodecki M, Horodecki P, Pawlowski M and Ramanathan R 2014 Phys. Rev. A 90 032322
[15] Mironowicz P, Gallego R and Pawlowski M 2015 Phys. Rev. A 91 032317
[16] Ramanathan R, Brandao F G S L, Horodecki K, Horodecki M, Horodecki P and Wojewodka H 2016 Phys. Rev. Lett. 117 230501
[17] Li X 2016 arXiv:1608.00127
[18] Ghne O, Tth G, Hyllus P and Briegel H 2005 Phys. Rev. Lett. 95 120405
[19] Cao Z, Zhou H Y, Yuan X and Ma X F 2016 Phys. Rev. X 6 011020
[20] Marangon D G, Vallone G and Villoresi P 2017 Phys. Rev. Lett. 118 060503
[1] One-decoy state reference-frame-independent quantum key distribution
Xiang Li(李想), Hua-Wei Yuan(远华伟), Chun-Mei Zhang(张春梅), Qin Wang(王琴). Chin. Phys. B, 2020, 29(7): 070303.
[2] Hybrid linear amplifier-involved detection for continuous variable quantum key distribution with thermal states
Yu-Qian He(贺宇千), Yun Mao(毛云), Hai Zhong(钟海), Duang Huang(黄端), Ying Guo(郭迎). Chin. Phys. B, 2020, 29(5): 050309.
[3] Reconciliation for CV-QKD using globally-coupled LDPC codes
Jin-Jing Shi(石金晶), Bo-Peng Li(李伯鹏), Duan Huang(黄端). Chin. Phys. B, 2020, 29(4): 040301.
[4] Reference-frame-independent quantum key distribution with an untrusted source
Jia-Ji Li(李家骥), Yang Wang(汪洋), Hong-Wei Li(李宏伟), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(3): 030303.
[5] Performance analysis of continuous-variable measurement-device-independent quantum key distribution under diverse weather conditions
Shu-Jing Zhang(张淑静), Chen Xiao(肖晨), Chun Zhou(周淳), Xiang Wang(汪翔), Jian-Shu Yao(要建姝), Hai-Long Zhang(张海龙), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(2): 020301.
[6] Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter
Ge-Hai Du(杜舸海), Hong-Wei Li(李宏伟), Yang Wang(汪洋), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(9): 090301.
[7] Temperature effects on atmospheric continuous-variable quantum key distribution
Shu-Jing Zhang(张淑静), Hong-Xin Ma(马鸿鑫), Xiang Wang(汪翔), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏), Hai-Long Zhang(张海龙). Chin. Phys. B, 2019, 28(8): 080304.
[8] Proof-of-principle experimental demonstration of quantum secure imaging based on quantum key distribution
Yi-Bo Zhao(赵义博), Wan-Li Zhang(张万里), Dong Wang(王东), Xiao-Tian Song(宋萧天), Liang-Jiang Zhou(周良将), Chi-Biao Ding(丁赤飚). Chin. Phys. B, 2019, 28(10): 104203.
[9] Finite-size analysis of continuous-variable quantum key distribution with entanglement in the middle
Ying Guo(郭迎), Yu Su(苏玉), Jian Zhou(周健), Ling Zhang(张玲), Duan Huang(黄端). Chin. Phys. B, 2019, 28(1): 010305.
[10] Finite-size analysis of eight-state continuous-variable quantum key distribution with the linear optics cloning machine
Hang Zhang(张航), Yu Mao(毛宇), Duan Huang(黄端), Ying Guo(郭迎), Xiaodong Wu(吴晓东), Ling Zhang(张玲). Chin. Phys. B, 2018, 27(9): 090307.
[11] Controlling a sine wave gating single-photon detector by exploiting its filtering loophole
Lin-Xi Feng(冯林溪), Mu-Sheng Jiang(江木生), Wan-Su Bao(鲍皖苏), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋). Chin. Phys. B, 2018, 27(8): 080305.
[12] Continuous-variable quantum key distribution based on continuous random basis choice
Weiqi Liu(刘维琪), Jinye Peng(彭进业), Peng Huang(黄鹏), Shiyu Wang(汪诗寓), Tao Wang(王涛), Guihua Zeng(曾贵华). Chin. Phys. B, 2018, 27(7): 070305.
[13] Practical security of continuous-variable quantum key distribution under finite-dimensional effect of multi-dimensional reconciliation
Yingming Zhou(周颖明), Xue-Qin Jiang(蒋学芹), Weiqi Liu(刘维琪), Tao Wang(王涛), Peng Huang(黄鹏), Guihua Zeng(曾贵华). Chin. Phys. B, 2018, 27(5): 050301.
[14] Passive round-robin differential-quadrature-phase-shift quantum key distribution scheme with untrusted detectors
Hongwei Liu(刘宏伟), Wenxiu Qu(屈文秀), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Yong Zhang(张勇), Haiqiang Ma(马海强). Chin. Phys. B, 2018, 27(10): 100309.
[15] Time-energy high-dimensional one-side device-independent quantum key distribution
Hai-Ze Bao(包海泽), Wan-Su Bao(鲍皖苏), Yang Wang(汪洋), Rui-Ke Chen(陈瑞柯), Hong-Xin Ma(马鸿鑫), Chun Zhou(周淳), Hong-Wei Li(李宏伟). Chin. Phys. B, 2017, 26(5): 050302.
No Suggested Reading articles found!