Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 010304    DOI: 10.1088/1674-1056/27/1/010304
GENERAL Prev   Next  

Quantum coherence and non-Markovianity of an atom in a dissipative cavity under weak measurement

Yu Liu(刘禹), Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发)
Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
Abstract  Quantum coherence and non-Markovianity of an atom in a dissipative cavity under weak measurement are investigated in this work. We find that:the quantum coherence obviously depends on the initial atomic state, the strength of the weak measurement and its reversal, the atom-cavity coupling constant and the non-Markovian effect. It is obvious that the weak measurement effect protects the coherence better. The quantum coherence is preserved more efficiently for larger atom-cavity coupling. The stronger the non-Markovian effect is, the more slowly the coherence reduces. The quantum coherence can be effectively protected by means of controlling these physical parameters.
Keywords:  quantum coherence      non-Markovianty      dissipative cavity  
Received:  15 August 2017      Revised:  25 September 2017      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  34.80.Qb (Laser-modified scattering)  
  42.25.Kb (Coherence)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: Project supported by the Scientific Research Project of Hunan Provincial Education Department, China (Grant No. 16C0949), the Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2017B177), the National Natural Science Foundation of China (Grant No. 11374096), and the Doctoral Science Foundation of Hunan Normal University, China.
Corresponding Authors:  Hong-Mei Zou     E-mail:  zhmzc1997@126.com

Cite this article: 

Yu Liu(刘禹), Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发) Quantum coherence and non-Markovianity of an atom in a dissipative cavity under weak measurement 2018 Chin. Phys. B 27 010304

[1] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[2] Bu K, Kumar A and Wu J 2016 arXiv:1603.06322 [quant-ph]
[3] Mondal D, Pramanik T and Pati A K 2017 Phys. Rev. A 95 010301
[4] Huang Z and Situ H 2017 Int. J. Theor. Phys. 56 503
[5] Mortezapour A, Borji M A and Franco R L 2017 arXiv:1705.00887v1 [quant-ph]
[6] Chin S 2017 arXiv:1702.03219 [quan-ph]
[7] Streltsov A, Chitambar E, Rana S, Bera M N, Winter A and Lewenxtein M 2016 Phys. Rev. Lett. 116 240405
[8] Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112
[9] Guo Y and Goswami S 2017 Phys. Rev. A 95 062340
[10] Mukhopadhyay C, Das S, Bhattacharya S, Sen A and Sen U 2017 arXiv:1705.04343v1 [quan-ph]
[11] Zhang Y R, Shao L H, Li Y M and Fan H 2016 Phys. Rev. A 93 012334
[12] Peng Y, Jiang Y and Fan H 2016 Phys. Rev. A 93 032326
[13] Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351
[14] Koashi M and Ueda M 1999 Phys. Rev. Lett. 82 2598
[15] Situ H Z and Hu X Y 2016 Quantum Inf. Process. 15 4649
[16] Zou H M and Fang M F 2015 Quantum Inf. Process. 14 2673
[17] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[18] Zou H M, Fang M F and Yang B Y 2013 Chin. Phys. B 22 120303
[19] Zou H M and Fang M F 2016 J. Mod. Opt. 63 2279
[20] Zou H M and Fang M F 2016 Chin. Phys. B 25 090302
[21] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) pp. 461-479
[22] Wang M M and Qu Z G 2013 arXiv:1612.06020v1 [quan-ph]
[23] Scala M, Militello B, Messina A, Maniscalco S, Piilo J and Suominen K A 2008 Phys. Rev. A 77 043827
[24] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 105 050403
[25] Nielsen M A and Chuang I L 2000 Quantum Compution an Quantum Information (England: Cambridge University Press) pp. 399-400
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[3] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[4] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[5] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[6] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[7] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[8] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[9] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[10] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[11] Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel
Fugang Zhang(张福刚), Yongming Li(李永明). Chin. Phys. B, 2018, 27(9): 090301.
[12] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[13] Robustness of coherence between two quantum dots mediated by Majorana fermions
Liang Chen(陈亮), Ye-Qi Zhang(张业奇), Rong-Sheng Han(韩榕生). Chin. Phys. B, 2018, 27(7): 077102.
[14] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[15] The heat and work of quantum thermodynamic processes with quantum coherence
Shanhe Su(苏山河), Jinfu Chen(陈劲夫), Yuhan Ma(马宇翰), Jincan Chen(陈金灿), Changpu Sun(孙昌璞). Chin. Phys. B, 2018, 27(6): 060502.
No Suggested Reading articles found!