Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 010306    DOI: 10.1088/1674-1056/27/1/010306
GENERAL Prev   Next  

Novel quantum watermarking algorithm based on improved least significant qubit modification for quantum audio

Zhi-Guo Qu(瞿治国)1, Huang-Xing He(何煌兴)2, Tao Li(李涛)2
1 Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2 School of Electronic & Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Abstract  As one of essential multimedia in quantum networks, the copyright protection of quantum audio has gradually become an important issue in the domain of quantum information hiding in the decades. In this paper, an improved quantum watermarking algorithm based on quantum audio by using least significant qubit (LSQb) modification is proposed. Compared with the previous achievements, it can effectively improve the robustness and security of watermark for copyright protection of quantum audio. In the new algorithm, the least significant bites and the peripheral least significant bits of the amplitudes are modified in terms of their logical consistency and correlation to enhance watermark robustness of resisting various illegal attacks. Furthermore, the new algorithm can avoid the weak robustness defect of many previous algorithms that directly embedded the watermark into the least significant bits. In order to implement the new algorithm, some specific quantum circuits are designed to obtain better applicability and scalability for embedding and extracting watermark. Finally, the simulation results including the values of audio waveforms and signal to noise ratios (SNR) prove that the new algorithm has good transparency, robustness, and security.
Keywords:  quantum audio watermarking      least significant qubit      logical consistency and correlation      quantum circuits  
Received:  09 July 2017      Revised:  09 September 2017      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61373131, 61303039, 61232016, and 61501247), Sichuan Youth Science and Technique Foundation, China (Grant No. 2017JQ0048), NUIST Research Foundation for Talented Scholars of China (Grant No. 2015r014), and PAPD and CICAEET Funds of China.
Corresponding Authors:  Zhi-Guo Qu     E-mail:  qzghhh@126.com

Cite this article: 

Zhi-Guo Qu(瞿治国), Huang-Xing He(何煌兴), Tao Li(李涛) Novel quantum watermarking algorithm based on improved least significant qubit modification for quantum audio 2018 Chin. Phys. B 27 010306

[1] Xia Z H, Wang X H, Zhang L G, Qin Z, Sun X M and Ren K 2016 IEEE T. Inf. Foren. Sec. 11 2594
[2] Fu Z J, Sun X M and Xi J 2015 J. Commun. Netw. 17 525
[3] Fu Z J, Ren K, Shu J G, Sun X M and Huang F X 2016 IEEE T. Parall. Distr. 27 2546
[4] Qu Z G, Keeney J, Robitzsch S, Zaman F and Wang X J 2016 China Commun. 13 108
[5] Liu Q, Cai W D, Shen J, Fu Z J, Liu X D and Linge N 2016 Secur. Commun. Netw. 9 4002
[6] Bennett C H and Brassard G 2012 IEEE. Int. Conf. Comput. Syst. Sig. Process. 2012 175
[7] Xu P, Wang Y, Bao H Z, Wang Y and Bao H Z 2017 Chin. Phys. Lett. 34 20302
[8] Jiang M S, Zhou C and Wang Y 2017 Chin. Phys. B 26 020303
[9] Kulik S P, Molotkov S N and Radchenko I V 2012 JETP Lett. 96 336
[10] Yang Y G, Cao W F and Wen Q Y 2010 Chin. Phys. B 19 050306
[11] Zhu Z C, Zhang Y Q and Fu A M 2012 Chin. Phys. B 21 010307
[12] Guo Y, Shi J J and Liang J W 2016 Acta Phys. Sin. 65 160301 (in Chinese)
[13] Bostrom K and Felbinger T 2012 Phys. Rev. Lett 89 187902
[14] Zhao G, Cao Z W, Feng X Y and Peng J Y 2016 Acta Phys. Sin. 65 230301 (in Chinese)
[15] Liu Z H, Chen H W and Liu W J 2016 Chin. Phys. Lett. 33 070305
[16] Wang M M, Chen X B and Yang Y X 2013 Sci. China Phys. Mech. 56 1636
[17] Xu S J, Chen X B, Niu X X and Yang Y X 2013 Sci. China Phys. Mech. 56 1745
[18] Le P Q, Dong F and Hirota K 2010 Quantum Inf. Process. 10 63
[19] Abdullah M I, Phuc Q L, Dong F Y and Hirota K 2012 Inform. Sciences 186 126
[20] Negin F and Mosayeb N 2012 Int. J. Theor. Phys. 51 2094.
[21] Zhang W W, Gao F, Liu B, Jia H Y, Wen Q Y and Chen H 2013 Int. J. Theor. Phys. 52 504
[22] Zhang W W, Gao F, Liu B, Wen Q Y and Chen H 2012 Quantum Inf. Process. 12 793
[23] Song X H, Wang S, Ahmed A A E and Niu X M 2014 Multimedia Syst. 20 379
[24] Wang N and Lin S 2015 Chin. J. Quantum Electron. 32 263
[25] Jiang N, Zhao N and Wang L 2016 Int. J. Theor. Phys. 55 107
[26] Miyake S and Nakamae K 2016 Quantum Inf. Process. 15 1849
[27] Wang S, Sang J Z, Song X H and Niu X M 2015 Measurement 73 352
[28] Wang J 2016 Int. J. Theor. Phys. 55 1622
[29] Zhang Y, Lu K, Gao Y H and Wang M 2013 Quantum Inf. Process. 12 2833
[1] Interaction induced non-reciprocal three-level quantum transport
Sai Li(李赛), Tao Chen(陈涛), Jia Liu(刘佳), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2021, 30(6): 060314.
[2] Phase-controlled coherent population trapping in superconducting quantum circuits
Cheng Guang-Ling (程广玲), Wang Yi-Ping (王一平), Chen Ai-Xi (陈爱喜). Chin. Phys. B, 2015, 24(4): 044204.
[3] Structure formation of entanglement entropy in a system of two superconducting qubits coupled with an LC-resonator
Ge Guo-Qin(葛国勤), Qin Cui(覃翠), Yin Miao(尹淼), and Huang Yong-Hua(黄勇华). Chin. Phys. B, 2011, 20(8): 080304.
[4] Probabilistic teleportation of multi-particle partially entangled state
Chen Xiu-Bo(陈秀波), Du Jian-Zhong(杜建忠), Wen Qiao-Yan(温巧燕), and Zhu Fu-Chen(朱甫臣) . Chin. Phys. B, 2008, 17(3): 771-777.
No Suggested Reading articles found!