Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 077804    DOI: 10.1088/1674-1056/26/7/077804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Guided mode resonance in planar metamaterials consistingof two ring resonators with different sizes

Zhen Yu(俞禛), Hang Che(陈航), Jianjun Liu(刘建军), Xufeng Jing(井绪峰), Xiangjun Li(李向军), Zhi Hong(洪治)
Centre for THz Research, China Jiliang University, Hangzhou 310018, China
Abstract  We proposed and experimentally investigated a two-ring-resonator composed planar hybrid metamaterial (MM), in which the spectra of guided mode resonance (GMR) and Fano resonance or EIT-like response induced by coherent interaction between MM resonance and GMR can be easily controlled by the size of the two rings in the terahertz regime. Furthermore, a four-ring-resonator composed MM for polarization-insensitive GMRs was demonstrated, where GMRs of both TE and TM modes are physically attributed to the diffraction coupling by two ±45° tilting gratings. Such kind of device has great potential in ultra-sensitive label-free sensors, filters, or slow light based devices.
Keywords:  metamaterials      terahertz      guided mode resonance  
Received:  19 January 2017      Revised:  09 March 2017      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.79.Gn (Optical waveguides and couplers)  
  42.79.Dj (Gratings)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61377108 and 61405182).
Corresponding Authors:  Zhi Hong     E-mail:  hongzhi@cjlu.edu.cn

Cite this article: 

Zhen Yu(俞禛), Hang Che(陈航), Jianjun Liu(刘建军), Xufeng Jing(井绪峰), Xiangjun Li(李向军), Zhi Hong(洪治) Guided mode resonance in planar metamaterials consistingof two ring resonators with different sizes 2017 Chin. Phys. B 26 077804

[1] Wang S S, Moharam M G, Magnusson R and Bagby J S 1990 J. Opt. Soc. Am. A 7 1470
[2] Magnusson R and Wang S S 1992 Appl. Phys. Lett. 61 1022
[3] Park C H, Yoon Y T and Lee S S 2012 Opt. Express 20 23769
[4] Sakat E, Vincent G, Ghenuche P, Bardou N, Dupuis C, Collin S, Pardo F, Haidar R and Pelouard J 2012 Opt. Express 20 13082
[5] Kaplan A F, Xu T and Guo L J 2011 Appl. Phys. Lett. 99 143111
[6] Sakat E, Vincent G, Ghenuche P, Bardou N, Collin S, Pardo F, Pelouard J and Haidar R 2011 Opt. Lett. 36 3054
[7] Lee S G, Jung S Y, Kim H S, Lee S and Park J M 2015 Opt. Lett. 40 4241
[8] Song S, Sun F, Chen Q and Zhang Y 2015 IEEE Trans. THz Sci. Technol. 5 131
[9] Ding Y and Magnusson R 2004 Opt. Express 12 1885
[10] Liu W, Li Y, Jiang H, Lai Z and Chen H 2013 Opt. Lett. 38 163
[11] Boltasseva A and Atwater H A 2011 Science 331 290
[12] Cao W, Singh R, Al-Naib I, He M, Taylor A J and Zhang W 2012 Opt. Lett. 37 3366
[13] Fedotov V A, Rose M, Prosvirnin S L, Papasimakis N and Zhelude N I 2007 Phys. Rev. Lett. 99 147401
[14] Al-Naib I, Singh R, Rockstuhl C, Lederer F, Delprat S, Rocheleau D, Chaker M, Ozaki T and Morandotti R 2012 Appl. Phys. Lett. 101 071108
[15] Al-Naib I, Jansen C, Singh R, Walther M and Koch M 2013 IEEE Trans. THz Sci. Technol. 3 772
[16] Ai-Naib I, Hebestreit E, Rockstuhl C, Lederer F, Christodoulides D, Ozaki T and Morandotti R 2014 Phys. Rev. Lett. 112 183903
[17] Ai-Naib I, Yang Y, Dignam M M, Zhang W and Singh R 2015 Appl. Phys. Lett. 106 011102
[18] Tian Z, Gu J Q, Han J G, Hara J and Zhang W L 2013 Physics 42 838
[19] Chen H, Liu J and Hong Z 2017 Opt. Commun. 383 508
[20] Born N, Ai-Naib I, Jansen C, Singh R, Moloney J V, Scheller M and Koch M 2015 Adv Opt Mat 3 642
[21] Moharam M G, Grann E B and Pommet D A 1995 J. Opt. Soc. Am. A 12 1068
[22] Sun Y, Chen H, Li X and Hong Z 2017 Opt. Commun. 392 142
[23] Dong Z G, Ni P G, Zhu J and Zhang X 2012 Opt. Express 20 7206
[24] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H and Chong C T 2010 Nat. Mater. 9 707
[25] Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
[26] Tassin P, Zhang L, Koschny T, Economou E N and Soukoulis C M 2009 Phys. Rev. Lett. 102 053901
[27] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304
[28] Perret E, Zerounian N, David S and Aniel F 2008 Microelectronic Eng. 85 2276
[29] Chen D, Lu Q and Zhao Y 2006 Appl. Surf. Sci. 253 1573
[30] Wu D, Liu J, Li H, Han H and Hong Z 2013 Acta Optica Sinica 33 1223002 (in Chinese)
[1] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[2] High efficiency and broad bandwidth terahertz vortex beam generation based on ultra-thin transmission Pancharatnam-Berry metasurfaces
Wenyu Li(李文宇), Guozhong Zhao(赵国忠), Tianhua Meng(孟田华), Ran Sun(孙然), and Jiaoyan Guo(郭姣艳). Chin. Phys. B, 2021, 30(5): 058103.
[3] High performance infrared detectors compatible with CMOS-circuit process
Chao Wang(王超), Ning Li(李宁), Ning Dai(戴宁), Wang-Zhou Shi(石旺舟), Gu-Jin Hu(胡古今), and He Zhu(朱贺). Chin. Phys. B, 2021, 30(5): 050702.
[4] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[5] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[6] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[7] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[8] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[9] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[10] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[11] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[12] Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors
Zhi-Yong Tan(谭智勇), Wen-Jian Wan(万文坚), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(8): 084212.
[13] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[14] Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal
Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣). Chin. Phys. B, 2020, 29(7): 077804.
[15] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
No Suggested Reading articles found!