Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 068102    DOI: 10.1088/1674-1056/26/6/068102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Different effect of NiMnCo or FeNiCo on the growth of type-IIa large diamonds with Ti/Cu as nitrogen getter

Shang-Sheng Li(李尚升)11, He Zhang(张贺)1, Tai-Chao Su(宿太超)1, Qiang Hu(胡强)1, Mei-Hua Hu(胡美华)1, Chun-Sheng Gong(龚春生)2, Hon-An Ma(马红安)2, Xiao-Peng Jia(贾晓鹏)3, Yong Li(李勇)4
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
2 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
3 School of Data Science, Tongren University, Tongren 554300, China;
4 Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang 471023, China
Abstract  

In order to synthesize high-quality type-IIa large diamond, the selection of catalyst is very important, in addition to the nitrogen getter. In this paper, type-IIa large diamonds are grown under high pressure and high temperature (HPHT) by using the temperature gradient method (TGM), with adopting Ti/Cu as the nitrogen getter in Ni70Mn25Co5 (abbreviated as NiMnCo) or Fe55Ni29Co16 (abbreviated FeNiCo) catalyst. The values of nitrogen concentration (Nc) in both synthesized high-quality diamonds are less than 1 ppm, when Ti/Cu (1.6 wt%) is added in the FeNiCo or Ti/Cu (1.8 wt%) is added in the NiMnCo. The difference in solubility of nitrogen between both catalysts at HPHT is the basic reason for the different effect of Ti/Cu on eliminating nitrogen. The nitrogen-removal efficiency of Ti/Cu in the NiMnCo catalyst is less than in the FeNiCo catalyst. Additionally, a high-quality type-IIa large diamond size of 5.0 mm is obtained by reducing the growth rate and keeping the nitrogen concentration of the diamond to be less than 1 ppm, when Ti/Cu (1.6 wt%) is added in the FeNiCo catalyst.

Keywords:  high pressure and high temperature      catalyst      nitrogen getter      type-IIa large diamond  
Received:  17 January 2017      Revised:  14 March 2017      Published:  05 June 2017
PACS:  81.05.ug (Diamond)  
  81.05.Bx (Metals, semimetals, and alloys)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11604246), the China Postdoctoral Science Foundation (Grant No. 2016M592714), the Professional Practice Demonstration Base for Professional Degree Graduate in Material Engineering of Henan Polytechnic University, China (Grant No. 2016YJD03), the Funds from the Education Department of Henan Province, China (Grant Nos. 12A430010 and 17A430020), and the Project for Key Science and Technology Research of Henan Province, China (Grant No. 162102210275).

Corresponding Authors:  Shang-Sheng Li     E-mail:  lishsh@hpu.edu.cn

Cite this article: 

Shang-Sheng Li(李尚升), He Zhang(张贺), Tai-Chao Su(宿太超), Qiang Hu(胡强), Mei-Hua Hu(胡美华), Chun-Sheng Gong(龚春生), Hon-An Ma(马红安), Xiao-Peng Jia(贾晓鹏), Yong Li(李勇) Different effect of NiMnCo or FeNiCo on the growth of type-IIa large diamonds with Ti/Cu as nitrogen getter 2017 Chin. Phys. B 26 068102

[1] Wentorf R H 1971 J. Phys. Chem. 75 1833
[2] Strong H M and Chrenko R M 1971 J. Phys. Chem. 75 1838
[3] Burns R C, Hansen J O, Spits R A, Sibanda M, Wellbourn C M and Welch D L 1999 Diamond Rel. Mater. 8 1433
[4] Sumiya H, Harano K and Tamasaku K 2015 Diamond Relat. Mater. 58 221
[5] Li S S, Gong C S, Su T C, Hu M H, Zhang H, Ma H A and Jia X P 2017 Int. J. Refract. Met. Hard Mater. 62 37
[6] Wang X C, Ma H A, Zang C Y, Tian Y, Li S S and Jia X P 2005 Chin. Phys. Lett. 22 1800
[7] Li Y D, Jia X P, Yan B M, Chen N, Fang C, Li Y and Ma H A 2016 Chin. Phys. B 25 048103
[8] Palyanov Y N, Borzdov Y M, KhokhryakovA F, Kupriyanov I N and Sokol A G 2010 Cryst. Growth Des. 10 3169
[9] Zhang H, Li S S, Su T C, Hu M H, Li G H, Ma H A and Jia X P 2016 Chin. Phys. B 25 058102
[10] Sumiya H, Toda N and Satoh S 2002 J. Cryst. Growth 237-239 1281
[11] Li S S, Li X L, Ma H A, Su T C, Xiao H Y, Huang G F, Li Y and Jia X P 2011 Chin. Phys. Lett. 28 068101
[12] Li Y, Jia X P, Feng Y G, Fang C, Fan L J, Li Y D, Zeng X and Ma H A 2015 Chin. Phys. B 24 088104
[13] Yan B M, Jia X P, Sun S S, Fang C, Chen N, Li Y D and Ma H A 2015 Int. J. Refract. Met. Hard Mater. 48 56
[14] Li S S, Jia X P, Zang C Y, Tian Y, Zhang Y F, Xiao H Y, Huang G F, Ma L Q, Li Y and Li X L 2008 Chin. Phys. Lett. 25 3801
[15] Zhang H, Li S S, Su T C, Hu M H, Zhou Y M, Fan H T, Gong C S, Jia X P, Ma H A and Xiao H Y 2015 Acta Phys. Sin. 64 198103 (in Chinese)
[16] Li S S, Ma H A, Li X L, Su T C, Huang G F, L Y and Jia X P 2011 Chin. Phys. B 20 028103
[17] Kanda H 2000 Braz. J. Phys 30 482
[18] Khokhryakov A F, Nechaev D V, Palyanov Y N and Kuper K E 2016 Diamond Relat. Mater. 70 1
[19] Sumiya H, Harano K and Tamasaku K 2015 Diamond Relat. Mater. 58 221
[20] Zang C Y Ma H A Liang Zh Z Li S S Zhang Y F and Jia X P 2006 Diamond Abrasives Eng. 6 9
[21] Kang K N, Jin Y, Kim J and Ajmera P K 2012 Diamond Relat. Mater. 27-28 76
[1] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[2] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[3] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[4] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[5] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[6] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[7] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[8] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[9] Characteristics of urea under high pressure and high temperature
Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(9): 098101.
[10] Inclusions in large diamond single crystals at different temperatures of synthesis
Fei Han(韩飞), Shang-Sheng Li(李尚升), Xue-Fei Jia(贾雪菲), Wei-Qin Chen(陈玮琴), Tai-Chao Su(宿太超), Mei-Hua Hu(胡美华), Kun-Peng Yu(于昆鹏), Jian-Kang Wang(王健康), Yu-Min Wu(吴玉敏), Hong-An Ma(马红安), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(2): 028103.
[11] Single-doped charged gold cluster with highly selective catalytic activity for the reduction of SO2 by CO: First-principles study
Yan-Ling Hu(胡燕玲), Hao-Ran Zhu(祝浩然), Shi-Hao Wei(韦世豪). Chin. Phys. B, 2019, 28(11): 113101.
[12] In situ growth of different numbers of gold nanoparticles on MoS2 with enhanced electrocatalytic activity for hydrogen evolution reaction
Xuan Zhao(赵宣), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Chen Fu(付晨). Chin. Phys. B, 2018, 27(6): 068103.
[13] High-resolution electron microscopy for heterogeneous catalysis research
Yong Zhu(朱勇), Mingquan Xu(许名权), Wu Zhou(周武). Chin. Phys. B, 2018, 27(5): 056804.
[14] Synthesis of diamonds in Fe—C systems using nitrogen and hydrogen co-doped impurities under HPHT
Shi-Shuai Sun(孙士帅), Zhi-Hui Xu(徐智慧), Wen Cui(崔雯), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安). Chin. Phys. B, 2017, 26(9): 098101.
[15] Modulating the properties of monolayer C2N: A promising metal-free photocatalyst for water splitting
Song Yu(俞松), Yong-Chao Rao(饶勇超), Xiang-Mei Duan(段香梅). Chin. Phys. B, 2017, 26(8): 087301.
No Suggested Reading articles found!