Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 060303    DOI: 10.1088/1674-1056/26/6/060303
GENERAL Prev   Next  

Generating EPR-entangled mechanical state via feeding finite-bandwidth squeezed light

Cheng-qian Yi(伊程前), Zhen Yi(伊珍), Wen-ju Gu(谷文举)
Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
Abstract  Einstein-Podolski-Rosen (EPR) entanglement state is achievable by combining two single-mode position and momentum squeezed states at a 50:50 beam-splitter (BS). We investigate the generation of the EPR entangled state of two vibrating membranes in a ring resonator, where clockwise (CW) and counter-clockwise (CCW) travelling-wave modes are driven by lasers and finite-bandwidth squeezed lights. Since the optomechanical coupling depends on the location of the membranes, CW and CCW can couple to the symmetric and antisymmetric combination of mechanical modes for a suitable arrangement, which corresponds to a 50:50 BS mixing. Moreover, by employing the red-detuned driving laser and tuning the central frequency of squeezing field blue detuned from the driving laser with a mechanical frequency, the squeezing property of squeezed light can be perfectly transferred to the mechanical motion in the weak coupling regime. Thus, the BS mixing modes can be position and momentum squeezed by feeding the appropriate squeezed lights respectively, and the EPR entangled mechanical state is obtained. Moreover, cavity-induced mechanical cooling can further suppress the influence of thermal noise on the entangled state.
Keywords:  EPR-entangled mechanical state      finite-bandwith squeezed light      squeezing transfer  
Received:  19 December 2016      Revised:  20 March 2017      Published:  05 June 2017
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
Fund: Projects supported by the National Natural Science Foundation of China (Grant Nos. 61505014 and 11504031), the Yangtze Youth Talents Fund, and the Yangtze Funds for Youth Teams of Science and Technology Innovation (Grant No. 2015cqt03).
Corresponding Authors:  Zhen Yi     E-mail:

Cite this article: 

Cheng-qian Yi(伊程前), Zhen Yi(伊珍), Wen-ju Gu(谷文举) Generating EPR-entangled mechanical state via feeding finite-bandwidth squeezed light 2017 Chin. Phys. B 26 060303

[1] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W and Simmonds R W 2011 Nature 475 359
[2] Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Grölacher S, Aspelmeyer M and Painter O 2011 Nature 478 89
[3] Verhagen E, Deléglise S, Weis S, Schliesser A and Kippenberg T J 2012 Nature 482 63
[4] Gröblacher S, Hammerer K, Vanner M and Aspelmeyer M 2009 Nature 460 724
[5] Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature 472 69
[6] Weis S, Riviére R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[7] Yan X B, Gu K H, Fu C B, Cui C L and Wu J H 2014 Chin. Phys. B 23 114201
[8] Cohen J D, Meenehan S M, MacCabe G S, Gröblacher S, Safavi-Naeini A H, Marsili F, Shaw M D and Painter O 2015 Nature 520 522
[9] Hu Y W, Xiao Y F, Liu Y C and Gong Q 2013 Front. Phys. 8 475
[10] Liu Y C, Hu Y W, Wong C W and Xiao Y F 2013 Chin. Phys. B 22 114213
[11] Hill J T, Safavi-Naeini A H, Chan J and Painter O 2012 Nat. Commun. 3 1196
[12] Liu Y, Davanço M, Aksyuk V and Srinivasan K 2013 Phys. Rev. Lett. 110 223603
[13] Dong C, Fiore V, Kuzyk M C and Wang H 2012 Science 338 1609
[14] Tian L 2012 Phys. Rev. Lett. 108 153604
[15] Wang Y D and Clerk A A 2012 Phys. Rev. Lett. 108 153603
[16] Ardnt M and Hornberger K 2014 Nat. Phys. 10 271
[17] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p. 59
[18] Mancini S, Giovannetti V, Vitali D and Tombesi P 2002 Phys. Rev. Lett. 88 120401
[19] Feng X M, Xiao Y, Yu Y F and Zhang Z M 2015 Chin. Phys. B 24 050301
[20] Zhang J, Peng K and Braunstein S L 2003 Phys. Rev. A 68 013808
[21] Yan Y, Gu W J and Li G X 2015 Sci. China-Phys. Mech. Astron. 58 050306
[22] Wang M, Lü X Y, Wang Y D, You J Q and Wu Y 2016 Phys. Rev. A 94 053807
[23] Vacanti G, Paternostro M, Palma G M and Vedral V 2008 New J. Phys. 10 095014
[24] Reid M D, Drummond P D, Bowen W P, Cavalcanti E G, Lam P K, Bachor H A, Andersen U L and Leuchs G 2009 Rev. Mod. Phys. 81 1727
[25] Ou Z Y, Pereira S F, Kimble H J and Peng K C 1992 Phys. Rev. Lett. 68 3663
[26] Loock P and Braunstein S L 2000 Phys. Rev. Lett. 84 3482
[27] Tan H, Li G and Meystre P 2013 Phys. Rev. A 87 033829
[28] Agarwal G S and Huang S 2016 Phys. Rev. A 93 043844
[29] Qu Q 2016 Chin. Phys. B 25 010304
[30] Asjad M, Zippilli S and Vitali D 2016 Phys. Rev. A 93 062307
[31] Ge W and Bhattacharya M 2016 New J. Phys. 18 103002
[32] Yan Y, Zhu J P, Zhao S M and Li G X 2015 Ann. Phys. 527 169
[33] Yan Y, Li G X and Wu Q L 2015 Opt. Express 23 021306
[34] Clark J B, Lecocq F, Simmonds R W, Aumentado J and Teufel J D 2016 Nat. Phys. 12 683
[35] Biancofiore C, Karuza M, Galassi M, Natali R, Tombesi P, Giuseppe G D and Vitali D 2011 Phys. Rev. A 84 033814
[36] Heinrich G, Ludwig M, Wu H, Hammerer K and Marquardt F 2011 C. R. Phys. 12 837
[37] Hammerer K, Wallquist M, Genes C, Ludwig M, Marquardt F, Treutlein P, Zoller P, Ye J and Kimble H J 2009 Phys. Rev. Lett. 103 063005
[38] Bhattacharya M and Meystre P 2008 Phys. Rev. A 78 041801(R)
[39] Gardiner C W and Zoller P 2000 Quantum noise (Berlin: Springer-Verlag) pp. 328-330
[40] Jähne K, Genes C, Hammerer K, Wallquist M, Polzik E S and Zoller P 2009 Phys. Rev. A 79 063819
[41] Wilson-Rae I, Nooshi N, Zwerger W and Kippenberg T J 2007 Phys. Rev. Lett. 99 093901
[42] Marquardt F, Chen J P, Clerk A A and Girvin S M 2007 Phys. Rev. Lett. 99 093902
[43] Huang S and Agarwal G S 2009 New J. Phys. 11 103044
[44] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
[1] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
[2] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[3] Tighter constraints of multiqubit entanglementin terms of Rényi-α entropy
Meng-Li Guo(郭梦丽), Bo Li(李波), Zhi-Xi Wang(王志玺), Shao-Ming Fei(费少明). Chin. Phys. B, 2020, 29(7): 070304.
[4] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[5] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[6] Quantum entanglement dynamics based oncomposite quantum collision model
Xiao-Ming Li(李晓明), Yong-Xu Chen(陈勇旭), Yun-Jie Xia(夏云杰), Qi Zhang(张琦), Zhong-Xiao Man(满忠晓). Chin. Phys. B, 2020, 29(6): 060302.
[7] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[8] Generation of tripartite Einstein-Podolsky-Rosen steering by cascaded nonlinear process
Yu Liu(刘瑜), Su-Ling Liang(梁素玲), Guang-Ri Jin(金光日), You-Bin Yu(俞友宾), Jian-Yu Lan(蓝建宇), Xiao-Bin He(何小斌), Kang-Xian Guo(郭康贤). Chin. Phys. B, 2020, 29(5): 050301.
[9] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[10] Dynamics of entropic uncertainty for three types of three-level atomic systems under the random telegraph noise
Xiong Xu(许雄), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(5): 057305.
[11] Efficient scheme for remote preparation of arbitrary n-qubit equatorial states
Xin-Wei Zha(查新未), Min-Rui Wang(王敏锐), Ruo-Xu Jiang(姜若虚). Chin. Phys. B, 2020, 29(4): 040304.
[12] Reduction of entropy uncertainty for qutrit system under non-Markov noisy environment
Xiong Xu(许雄), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(4): 040306.
[13] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[14] Monogamy and polygamy relations of multiqubit entanglement based on unified entropy
Zhi-Xiang Jin(靳志祥), Cong-Feng Qiao(乔从丰). Chin. Phys. B, 2020, 29(2): 020305.
[15] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
No Suggested Reading articles found!