Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 057301    DOI: 10.1088/1674-1056/26/5/057301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermal emission properties of one-dimensional grating with different parameters

Weixin Lin(林伟新)1, Guozhou Li(李国洲)1, Qiang Li(李强)2, Hongjin Hu(胡宏锦)1, Fang Han(韩防)1, Fanwei Zhang(张樊伟)1, Lijun Wu(吴立军)1
1 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devics, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China;
2 Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Abstract  

Thermal emission is often presented as a typical incoherent process. Incorporating periodic structures on the tungsten surface offers the possibility to obtain coherent thermal emission sources. Here we illustrate grating as an example to examine the influence of the geometric parameters on the thermal emission properties. It is found that for very shallow gratings, only surface plasmon polariton (SPP) modes can be excited and the emission efficiency is closely related with the filling factor. When the ratio of the depth to period of the grating is in the range from 1/20 to 1/2, the field between the adjacent corners can be coupled to each other across the air gap for the filling factor larger than 0.5 and produce a similar resonance as in an air rod. Further increase of the grating depth can cause the groove of the grating forming metal-insulator-metal (MIM) structures and induce surface plasmon standing wave modes. Our investigations will not only be helpful for manipulating thermal emission properties according to applications, but also help us understand the coupling mechanism between the incident electromagnetism waves and gratings with different parameters in various research fields.

Keywords:  surface plasmon polaritons      thermal emission      grating      surface plasmon standing wave  
Received:  07 November 2016      Revised:  16 December 2016      Published:  05 May 2017
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  44.40.+a (Thermal radiation)  
  41.50.+h (X-ray beams and x-ray optics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61378082 and 61675070) and the Project of High-level Professionals in the Universities of Guangdong Province, China.

Corresponding Authors:  Lijun Wu     E-mail:  ljwu@scnu.edu.cn

Cite this article: 

Weixin Lin(林伟新), Guozhou Li(李国洲), Qiang Li(李强), Hongjin Hu(胡宏锦), Fang Han(韩防), Fanwei Zhang(张樊伟), Lijun Wu(吴立军) Thermal emission properties of one-dimensional grating with different parameters 2017 Chin. Phys. B 26 057301

[1] Porto J A, Garcia-Vidal F J and Pendry J B 1999 Phys. Rev. Lett. 83 2845
[2] Shao L, Ruan Q F, Wang J F and Lin H Q 2014 Physics 43 290
[3] Martin-Moreno L, García-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B and Ebbesen T W 2001 Phys. Rev. Lett. 86 1114
[4] Tong L M and Xu H X 2012 Physics 41 582
[5] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[6] Li X F, Peng W, Zhao Y L, Wang Q and Wei J L 2016 Chin. Phys. B 25 37303
[7] Stockman I 2008 Nat. Photon. 2 327
[8] Huang Z, Koschny Th and Soukoulis C M 2012 Phy. Rev. Lett. 108 187402
[9] Sai H, Kanamori Y and Yugami H 2003 Appl. Phys. Lett. 82 1685
[10] Greffet J J 2011 Nature 478 191
[11] Laroche M, Arnold C, Marquier F, Carminati R, Greffet J J, Collin S, Bardou N and Pelouard J L 2005 Opt. Lett. 30 2623
[12] Huu N N, Chen Y B and Lo Y L 2012 Opt. Express 20 5882
[13] Chen Y B and Zhang Z M 2007 Opt. Commun. 269 411
[14] Han F, Sun X L, Wu L J and Li Q 2013 Opt. Express 21 28570
[15] Arnold C, Marquier F, Garin M, Pardo F, Collin S, Bardou N, Pelouard J L and Greffet J J 2012 Phys. Rev. B 86 035316
[16] Maruyama S, Kashiwa T, Yugami H and Esashi M 2001 Appl. Phys. Lett. 79 1393
[17] Hesketh P J, Zemel J N and Gebhart B 1986 Nature 324 549
[18] Sobnack M B, Tan W C, Wanstall N P, Preist T W and Sambles J R 1998 Phys. Rev. Lett. 80 5667
[19] Klein Koerkamp K J, Enoch S, Segerink F B, van Hulst N F and Kuipers L 2004 Phys. Rev. Lett. 92 183901
[20] Rephaeli E and Fan S 2008 Appl. Phys. Lett. 92 211107
[21] Rakić A D, Djurišić A B, Elazar J M and Majewski M L 1998 Appl. Opt. 37 5271
[22] Hao J M, Zhou L and Qiu M 2011 Phys. Rev. B 83 165107
[23] Fleming J G, Lin S Y, El-Kady I, Biswas R and Ho K M 2002 Nature 417 52
[24] Raether H 2007 Surface Plasmons (Berlin:Springer)
[25] Arthur R D, Vyacheslav V P and Sergei A N 2012 Phys. Rev. Lett. 108 127401
[26] Evgeny P, Nicolas B and Stefan E 2007 Opt. Express 15 4224
[27] Rao W Y, Li Q, Wang Y Z, Li T and Wu L J 2015 Acs Nano 9 2783
[28] Sai H, Kanamori Y, Hane K and Yugami H 2005 J. Opt. Soc. Am. A 9 1805
[29] Zhou J and Guo L J 2014 Sci. Rep. 4 3614
[30] Barnes W L, Preist T W, Kitson S C and Sambles J R 1996 Phys. Rev. B 54 6227
[31] Barnes W L, Kitson S C, Preist T W and Sambles J R 1997 J. Opt. Soc. Am. A 7 1654
[32] Félidj N, Aubard J, Lévi G, Krenn J R, Schider G, Leitner A and Aussenegg F R 2002 Phys. Rev. B 66 245407
[33] Heinzel A, Boerner V, Gombert A, Bläsi B, Wittwer V and Luther J 2000 J. Mod. Opt. 13 2399
[34] Chew W C 1995 Waves and Fields in Inhomogeneous Media (New York: Wiley-IEEE)
[1] Quantitative coherence analysis of dual phase grating x-ray interferometry with source grating
Zhi-Li Wang(王志立), Rui-Cheng Zhou(周瑞成), Li-Ming Zhao(赵立明), Kun Ren(任坤), Wen Xu(徐文), Bo Liu(刘波), and Heng Chen(陈恒). Chin. Phys. B, 2021, 30(2): 028702.
[2] Polarization-independent silicon photonic grating coupler for large spatial light spots
Lijun Yang(杨丽君), Xiaoyan Hu(胡小燕), Bin Li(李斌), and Jing Cao(曹静). Chin. Phys. B, 2021, 30(2): 024206.
[3] A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), Hua Yang(杨华), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024207.
[4] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[5] Polarization control and tuning efficiency of tunable vertical-cavity surface-emitting laser with internal-cavity sub-wavelength grating
Xiao-Long Wang(王小龙), Yong-Gang Zou(邹永刚), Zhi-Fang He(何志芳), Guo-Jun Liu(刘国军), Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2020, 29(8): 084208.
[6] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[7] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[8] Single-order soft x-ray spectra with spectroscopic photon sieve
Yu-Lin Gao(高宇林), Lai Wei(魏来), Qiang-Qiang Zhang(张强强), Zu-Zua Yang(杨祖华), Wei-Min Zhou(周维民), Lei-Feng Cao(曹磊峰). Chin. Phys. B, 2020, 29(5): 054101.
[9] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[10] Optimization of laser focused atomic deposition by channeling
Jie Chen(陈杰), Jie Liu(刘杰), Li Zhu(朱立), Xiao Deng(邓晓), Xinbin Cheng(陈鑫彬), Tongbao Li(李同保). Chin. Phys. B, 2020, 29(2): 020601.
[11] Noise properties of multi-combination information in x-ray grating-based phase-contrast imaging
Wali Faiz, Ji Li(李冀), Kun Gao(高昆), Zhao Wu(吴朝), Yao-Hu Lei(雷耀虎), Jian-Heng Huang(黄建衡), Pei-Ping Zhu(朱佩平). Chin. Phys. B, 2020, 29(1): 014301.
[12] Dynamic shaping of vectorial optical fields based on two-dimensional blazed holographic grating
Xinyi Wang(王心怡), Yuan Gao(高源), Zhaozhong Chen(陈召忠), Jianping Ding(丁剑平), Hui-Tian Wang(王慧田). Chin. Phys. B, 2020, 29(1): 014208.
[13] Properties of metal-insulator-metal waveguide loop reflector
Hu Long(龙虎), Xuan-Ke Zeng(曾选科), Yi Cai(蔡懿), Xiao-Wei Lu(陆小微), Hong-Yi Chen(陈红艺), Shi-Xiang Xu(徐世祥), Jing-Zhen Li(李景镇). Chin. Phys. B, 2019, 28(9): 094215.
[14] Hollow and filled fiber bragg gratings in nano-bore optical fibers
Yong-Xin Zhang(张永欣), Sheng Liang(梁生), Qian-Qing Yu(余倩卿), Zheng-Gang Lian(廉正刚), Zi-Nian Dong(董梓年), Xuan Wang(王旋), Yu-Qin Lin(林裕勤), Yu-Qi Zou(邹郁祁), Kun Xing(邢坤), Liu-Yan Liang(梁柳雁), Xiao-Ting Zhao(赵小艇), Li-Jing Tu(涂立静). Chin. Phys. B, 2019, 28(7): 074210.
[15] Development of the integrated integrating sphere cold atom clock
Ming-Yuan Yu(于明圆), Yan-Ling Meng(孟艳玲), Mei-Feng Ye(叶美凤), Xin Wang(王鑫), Xin-Chuan Ouyang(欧阳鑫川), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hua-Dong Cheng(成华东), Liang Liu(刘亮). Chin. Phys. B, 2019, 28(7): 070602.
No Suggested Reading articles found!