Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 047304    DOI: 10.1088/1674-1056/26/4/047304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum transport through a Z-shaped silicene nanoribbon

A Ahmadi Fouladi
Department of Physics, Sari Branch, Islamic Azad University, Sari, Iran
Abstract  In this work, the electronic transport properties of Z-shaped silicene nanoribbon (ZsSiNR) structure are investigated. The calculations are based on the tight-binding model and Green's function method in Landauer-Büttiker formalism, in which the electronic density of states (DOS), transmission probability, and current-voltage characteristics of the system are calculated, numerically. It is shown that the geometry of the ZsSiNR structure can play an important role to control the electron transport through the system. It is observed that the intensity of electron localization at the edges of the ZsSiNR decreases with the increase of the spin-orbit interaction (SOI) strength. Also, the semiconductor to metallic transition occurs by increasing the SOI strength. The present theoretical results may be useful to design silicene-based devices in nanoelectronics.
Keywords:  Z-shaped silicene nanoribbon      electronic transport      Green's function method      spin-orbit interaction  
Received:  18 November 2016      Revised:  16 January 2017      Published:  05 April 2017
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the Sari Branch, Islamic Azad University, Iran Grant No. 1-24850.
Corresponding Authors:  A Ahmadi Fouladi     E-mail:  a.ahmadifouladi@iausari.ac.ir

Cite this article: 

A Ahmadi Fouladi Quantum transport through a Z-shaped silicene nanoribbon 2017 Chin. Phys. B 26 047304

[1] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 15 155501
[2] Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B and Le Lay G 2010 Appl. Phys. Lett. 96 183102
[3] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
[4] Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802
[5] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nano 10 227
[6] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[7] Ezawa M 2012 New J. Phys. 14 033003
[8] Ding Y and Ni J 2009 Appl. Phys. Lett. 95 083115
[9] Han M Y, Ozyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805
[10] Chen Y P, Xie Y E and Zhong J 2008 Phys. Lett. A 372 5928
[11] Chen Y P, Xie Y E and Yan X H 2008 J. Appl. Phys. 103 063711
[12] Chen Y P, Xie Y E, Sun L Z and Zhong J 2008 Appl. Phys. Lett. 93 092104
[13] Zhang Z Z, Wu Z H, Chang K and Peeters F M 2009 Nanotechnology 20 415203
[14] Li H, Liu N, Zheng Y, Wang F and Hao H 2010 Physica B: Conden. Matter 405 3316
[15] Xu J G, Wang L and Weng M Q 2013 J. Appl. Phys. 114 153701
[16] Tong H and Wu M W 2012 Phys. Rev. B 85(20) 205433
[17] Ahmadi Fouladi A and Ketabi S 2015 Physica E: Low-dimensional Systems and Nanostructures 74 475
[18] Ahmadi Fouladi A 2016 Superlattices and Microstructures 95 108-114
[19] Zhou B, Zhou B, Zeng Y, Zhou G and Duan M 2016 Phys. Lett. A 380 1469
[20] Zhou B, Zhou B, Zeng Y, Zhou G and Duan M 2016 Phys. Lett. A 380 282
[21] Wang X S, Shen M, An X T and Liu J J 2016 Phys. Lett. A 380 1663
[22] Trivedi S, Srivastava A and Kurchania R 2014 J. Comput. Theor. Nanosci. 11 789
[23] Shakouri Kh, Simchi H, Esmaeilzadeh M, Mazidabadi H, and Peeters F M 2015 Phys. Rev. B 92 035413
[24] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[25] Sancho M P L, Sancho J M L, Sancho J M L and Rubio J 1985 J. Phys. F: Met. Phys. 15 851
[26] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[27] Ezawa M and Nagaosa N 2013 Phys. Rev. B 88 121401
[1] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[2] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[3] Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls
Lian Liu(刘恋), Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2018, 27(4): 047201.
[4] Spin flip in single quantum ring with Rashba spin-orbit interation
Duan-Yang Liu(刘端阳), Jian-Bai Xia(夏建白). Chin. Phys. B, 2018, 27(3): 037201.
[5] Three-dimensional modulations on the states of polarization of light fields
Peng Li(李鹏), Dongjing Wu(吴东京), Sheng Liu(刘圣), Yi Zhang(章毅), Xuyue Guo(郭旭岳), Shuxia Qi(齐淑霞), Yu Li(李渝), Jianlin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 114201.
[6] Two types of ground-state bright solitons in a coupled harmonically trapped pseudo-spin polarization Bose–Einstein condensate
T F Xu(徐天赋). Chin. Phys. B, 2018, 27(1): 016702.
[7] Electronic states and spin-filter effect in three-dimensional topological insulator Bi2Se3 nanoribbons
Genhua Liu(刘根华), Pingguo Xiao(肖平国), Piaorong Xu(徐飘荣), Huiying Zhou(周慧英), Guanghui Zhou(周光辉). Chin. Phys. B, 2018, 27(1): 017304.
[8] Two-dimensional transport and strong spin-orbit interaction in SrMnSb2
Jiwei Ling(凌霁玮), Yanwen Liu(刘彦闻), Zhao Jin(金昭), Sha Huang(黄沙), Weiyi Wang(王伟懿), Cheng Zhang(张成), Xiang Yuan(袁翔), Shanshan Liu(刘姗姗), Enze Zhang(张恩泽), Ce Huang(黄策), Raman Sankar, Fang-Cheng Chou, Zhengcai Xia(夏正才), Faxian Xiu(修发贤). Chin. Phys. B, 2018, 27(1): 017504.
[9] Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons
Kai-Wei Yang(杨开巍), Ming-Jun Li(李明君), Xiao-Jiao Zhang(张小姣), Xin-Mei Li(李新梅), Yong-Li Gao(高永立), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2017, 26(9): 098509.
[10] Electronic transport properties of single-wall boron nanotubes
Xinyue Dai(代新月), Yi Zhou(周毅), Jie Li(李洁), Lishu Zhang(张力舒), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(8): 087310.
[11] Electronic transport properties of lead nanowires
Lishu Zhang(张力舒), Yi Zhou(周毅), Xinyue Dai(代新月), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(7): 073102.
[12] Generation of Fabry-Pérot oscillations and Dirac state in two-dimensional topological insulators by gate voltage
Bin Xu(徐斌), Rao Li(李饶), Hua-Hua Fu(傅华华). Chin. Phys. B, 2017, 26(5): 057303.
[13] Photon-assisted and spin-dependent shot noise in magnetic-field tunable ZnSe/Zn1-xMnxSe structures
Chun-Lei Li(李春雷), Yong Guo(郭永), Xiao-Ming Wang(王小明), Yuan Lv(律原). Chin. Phys. B, 2017, 26(2): 027301.
[14] Moving bright solitons in a pseudo-spin polarization Bose-Einstein condensate
Tian-Fu Xu(徐天赋), Yu-Feng Zhang(张玉峰), Lei-Chao Xu(许磊超), Zai-Dong Li(李再东). Chin. Phys. B, 2017, 26(10): 100304.
[15] Carrier transport in III-V quantum-dot structures for solar cells or photodetectors
Wenqi Wang(王文奇), Lu Wang(王禄), Yang Jiang(江洋), Ziguang Ma(马紫光), Ling Sun(孙令), Jie Liu(刘洁), Qingling Sun(孙庆灵), Bin Zhao(赵斌), Wenxin Wang(王文新), Wuming Liu(刘伍明), Haiqiang Jia(贾海强), Hong Chen(陈弘). Chin. Phys. B, 2016, 25(9): 097307.
No Suggested Reading articles found!