Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 025203    DOI: 10.1088/1674-1056/26/2/025203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Lower order three-dimensional Burgers equation having non-Maxwellian ions in dusty plasmas

Apul N Dev
Center for Applied Mathematics, Siksha'O'Anusandhan University, Khandagiri, Bhubaneswar-751030, Odisha, India
Abstract  The dust acoustic (DA) shock wave with dust charge fluctuations, non-Maxwellian ions, and non-isothermal electrons is studied theoretically. The perturbation technique is employed to derive the lower order three-dimensional (3D) Burgers equation, and shock wave solution is explored by the tan-hyperbolic method. The effects of flat trapped and trapped electron distributions in the presence of Maxwellian and non-Maxwellian ions on characteristics shock waves are observed. The temperature ratio of non-Maxwellian ion temperature and non-isothermal electron temperature is found to play an important role in forming the shock-like structure.
Keywords:  dust acoustics shock wave      dust charge fluctutations      non-isothermal electrons      tan-hyperbolic method  
Received:  22 June 2016      Revised:  27 November 2016      Published:  05 February 2017
PACS:  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.35.Tc (Shock waves and discontinuities)  
Corresponding Authors:  Apul N Dev     E-mail:  apulnarayan@gmail.com

Cite this article: 

Apul N Dev Lower order three-dimensional Burgers equation having non-Maxwellian ions in dusty plasmas 2017 Chin. Phys. B 26 025203

[1] D'Angelo N 1995 J. Phys. D 28 1009
[2] Shukla P K and Silin V P 1992 Phys. Scr. 45 508
[3] Barkar A, Meclino R L and D'Angelo N 1995 Phys. Plasmas 2 3563
[4] Deka M K, Adhikary N C, Misra A P, Bailung H and Nakamura Y 2012 Phys. Plasmas 19 103704
[5] Rao N N, Shukla P K and Yu M Y 1990 Planet Space Sci. 38 543
[6] Shukla P K and Silin V P 1992 Phys. Scr. 45 508
[7] Barkan A, Merlino R L and D'Angelo N 1996 Planet Space Sci. 44 239
[8] Dev A N, Sarma J, Deka M K and Adhikary N C 2015 Plasma Sci. Technol. 17 268
[9] Sarma J and Dev A N 2014 Indian J. Pure Appl. Phys. 52 747
[10] Dev A N, Deka M K and Sarma J 2015 Can. J. Phys. 93 1030
[11] Xie Z J, Sui Y, Wang Y, Wang X J, Wang Y, Liu Z G, Li B S, Bai Y and Wang Z H 2016 Chin. Phys. Lett. 33 015201
[12] Huang F, Liu Y H, Chen Z Y, Wang L and Ye M F 2013 Chin. Phys. Lett. 30 115201
[13] Farokhi B and Eghbali M 2012 Chin. Phys. Lett. 29 075202
[14] Gong W H, Zhang Y L, Feng F, Liu F C and He Y F 2015 Acta Phys. Sin. 64 195202 (in Chinese)
[15] Li X L and Shi Y X 2014 Acta Phys. Sin. 63 215201 (in Chinese)
[16] Zhao X Y, Zhang B K and Zhang K Y 2013 Acta Phys. Sin. 62 175201 (in Chinese)
[17] Zhang C L, Kong W, Yang F, Liu S F and Hu B L 2013 Acta Phys. Sin. 62 095201 (in Chinese)
[18] Li L Q, Shi Y X, Wang F and Wei B 2012 Acta Phys. Sin. 61 125201 (in Chinese)
[19] Zhang Y L, Feng F, Liu F C, Dong L F and He Y F 2016 Chin. Phys. B 25 025201
[20] Liu X M, Li Q N and Li R 2015 Chin. Phys. B 24 075204
[21] El-Labany S K, El-Shamy E F, El-Taibany W F and Zedan N A 2015 Chin. Phys. B 24 035201
[22] Liu X M, Li Q N and Xu X 2014 Chin. Phys. B 23 085202
[23] Bandyapadhyay A and Das K P 1999 J. Plasma Phys. 62 255
[24] Bhattacharya S K, Paul S N and Chakraborty B 2003 Indian J. Phys. B 77 327
[25] Paul S N, Pakira G, Paul B and Ghosh B 2012 Acta Phys. Polonica A 122 116
[26] Mamun A A, Shukla P K and Cairns R A 1996 Phys. Plasmas 3 2610
[27] Dorranian D and Sabetkar A 2012 Phys. Plasmas 19 013702
[28] Adhikary N C, Deka M C, Dev A N and Sarma J 2014 J. Phys. Plasmas 21 083703
[29] Dev A N, Deka M K, Subedi R and Sarma J 2015 Plasma Sci. Technol. 17 721
[30] El-Shewy E K, Mahmoud A A, Tawfik A M, Abulwafa E M and Elgarayhi A 2014 Chin. Phys. B 23 070505
[31] Shahmansouri M 2012 Chin. Phys. Lett. 29 105201
[32] Rehman H U 2012 Chin. Phys. Lett. 29 065201
[33] Abrishami S A and Kadijani M N 2014 Plasma Sci. Technol. 16 545
[34] Ghosh S, Sarkar S, Khan M and Gupta M R 2001 Phys. Sci. 63 395
[35] El-Shamy E F 2005 Chaos, Solitons & Fractals 25 665
[36] Duan W S, Lü K P and Zhan J B 2001 Chin. Phys. Lett. 18 1088
[37] Haider M M, Ferdous T, Duha S S and Mamun A A 2014 Open J. Modern Phys. 1 13
[38] El-Wakil S A, Attia M T, El-Shewy E K, Zaghbeerand S K and Abdelwahed H G 2011 Appl. Appl. Math. 6 211
[39] Zobaer M S, Nahar L, Mukta K N, Roy N and Mamun A A 2013 Astrophys. & Space Sci. 346 351
[40] Paul S K 2012 Asian Trans. Sci. Technol. 2 25
[41] Tasnim I, Masud M M, Anowar M G and Mamun A A 2015 IEEE Trans. Plasma Sci. 43 2187
[42] Tasnim I Masud M M and Mamun A A 2013 Astrophys. Space Sci. 343 647
[43] Asaduzzaman M and Mamun A A 2012 Phys. Plasmas 19 093704
[44] Annou K and Annou R 2012 J. Phys. 78 121
[45] Pakzad H R 2011 World Acad. Sci. Eng. Tech. 5 906
[46] Ergun R E, Carlson C W, McFadden J P, et al. 1998 Geophys. Res. Lett. 25 2041
[47] Duan W S 2003 Chin. Phys. 12 479
[48] Zobaer M S, Mukta K N, Nahar L, Roy N and Mamun A A 2013 IEEE Trans. Plasma Sci. 41 1614
[49] Mamun A A and Zobaer M S 2014 Phys. Plasmas 21 022101
[50] Ghosh S 2009 Phys. Plasmas 16 103701
[51] Dev A N, Sarma J and Deka M K 2015 Can. J. Phys. 93 1030
[52] Dev A N, Sarma J, Deka M K and Adhikary N C 2015 Plasma Sci. Technol. 17 268
[53] Tribeche M, Houili H and Zerguini T H 2004 Phys. Plasmas 11 3001
[54] Michael C A, Howard J and Blackwell B D 2004 Phys. Plasmas 11 4008
[55] Maier E J and Hoffman J H 1974 J. Geophys. Res. 79 2444
[56] El-Awady E I, El-Tantawya S A, Moslem W M and Shukla P K 2010 Phys. Lett. A 374 3216
[57] Chuang S and Hau L 2009 Phys. Plasmas 16 022901
[1] Directional motion of dust particles at different gear structuresin a plasma
Chao-Xing Dai(戴超星), Chao Song(宋超), Zhi-Xiang Zhou(周志向), Wen-Tao Sun(孙文涛), Zhi-Qiang Guo(郭志强), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2020, 29(2): 025203.
[2] Crystalline order and disorder in dusty plasmas investigated by nonequilibrium molecular dynamics simulations
Aamir Shahzad, Maogang He, Sheeba Ghani, Muhammad Kashif, Tariq Munir, Fang Yang. Chin. Phys. B, 2019, 28(5): 055201.
[3] On the dielectric response function and dispersion relation in strongly coupled magnetized dusty plasmas
M Shahmansouri, N Khodabakhshi. Chin. Phys. B, 2018, 27(10): 105206.
[4] Small amplitude double layers in an electronegative dusty plasma with q-distributed electrons
Zhong-Zheng Li(李中正), Juan-Fang Han(韩娟芳), Dong-Ning Gao(郜东宁), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(10): 105204.
[5] Electric field in two-dimensional complex plasma crystal: Simulated lattices
Behnam Bahadory. Chin. Phys. B, 2018, 27(2): 025202.
[6] Dust charging and levitating in a sheath of plasma containing energetic particles
Jing Ou(欧靖), Xiao-Yun Zhao(赵晓云), Bin-Bin Lin(林滨滨). Chin. Phys. B, 2018, 27(2): 025204.
[7] Rotation of a single vortex in dusty plasma
Jia Yan(闫佳), Fan Feng(冯帆), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2017, 26(9): 095202.
[8] Drift vortices in inhomogeneous collisional dusty magnetoplasma
Jian-Rong Yang(杨建荣), Kui Lv(吕岿), Lei Xu(许磊), Jie-Jian Mao(毛杰键), Xi-Zhong Liu(刘希忠), Ping Liu(刘萍). Chin. Phys. B, 2017, 26(6): 065202.
[9] Mode transition in dusty micro-plasma driven by pulsed radio-frequency source in C2H2/Ar mixture
Xiang-Mei Liu(刘相梅), Rui Li(李瑞), Ya-Hui Zheng(郑亚辉). Chin. Phys. B, 2017, 26(4): 045202.
[10] Dust acoustic waves in collisional uniform dense magnetoplasma
Jian-Rong Yang(杨建荣), Ting Xu(徐婷), Jie-Jian Mao(毛杰键), Ping Liu(刘萍), Xi-Zhong Liu(刘希忠). Chin. Phys. B, 2017, 26(1): 015202.
[11] K—P—Burgers equation in negative ion-rich relativistic dusty plasma including the effect of kinematic viscosity
A N Dev, M K Deka, J Sarma, D Saikia, N C Adhikary. Chin. Phys. B, 2016, 25(10): 105202.
[12] Formation and dissociation of dust molecules in dusty plasma
Jia Yan(闫佳), Fan Feng(冯帆), Fucheng Liu(刘富成), Lifang Dong(董丽芳), Yafeng He(贺亚峰). Chin. Phys. B, 2016, 25(9): 095202.
[13] Simulation of nanoparticle coagulation in radio-frequency C2H2/Ar microdischarges
Xiang-Mei Liu(刘相梅), Qi-Nan Li(李奇楠), Rui Li(李瑞). Chin. Phys. B, 2016, 25(6): 065203.
[14] Cycloid motions of grains in a dust plasma
Yong-Liang Zhang(张永亮), Fan Feng(冯帆), Fu-Cheng Liu(刘富成), Li-Fang Dong(董丽芳), Ya-Feng He(贺亚峰). Chin. Phys. B, 2016, 25(2): 025201.
[15] Modeling of the nanoparticle coagulation in pulsed radio-frequency capacitively coupled C2H2 discharges
Liu Xiang-Mei, Li Qi-Nan, Li Rui. Chin. Phys. B, 2015, 24(7): 075204.
No Suggested Reading articles found!