Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 114303    DOI: 10.1088/1674-1056/26/11/114303
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theoretical analysis of interaction between a particle and an oscillating bubble driven by ultrasound waves in liquid

Yao-Rong Wu(武耀蓉), Cheng-Hui Wang(王成会)
Institute of Applied Acoustics, Shaanxi Normal University, Xi'an 710062, China
Abstract  

A theoretical model is developed to describe the interaction of a particle and an oscillating bubble at arbitrary separation between them. The derivation of the model is based on the multipole expansion of the particle and bubble velocity potentials and the use of Lagrangian mechanics. The model consists of three coupled ordinary differential equations. One of them accounts for the pulsation of the bubble and the other two describe the translation of the bubble and particle in an infinite, incompressible liquid. The model here is accurate to order 1/d10, where d is the distance between the centers of the particle and bubble. The effects of the size and density of the particle are investigated, namely, the interaction between the particle and bubble changes from repulsion to attraction with the increment of the particle density, and the increment of the particle size makes the interaction between the particle and bubble stronger. It is demonstrated that the driving frequency and acoustic pressure amplitude can affect the interaction of the particle and bubble. It is shown that the correct modeling of the translational dynamics of the bubble and particle at small separation distances requires terms accurate up to the tenth order.

Keywords:  particle      bubble      ultrasound wave  
Received:  01 June 2017      Revised:  13 July 2017      Published:  05 November 2017
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.25.+y (Nonlinear acoustics)  
  47.55.dp (Cavitation and boiling)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11204168 and 11474191) and the Fundamental Research Funds for the Central Universities of China (Grant No. GK201603102).

Corresponding Authors:  Cheng-Hui Wang     E-mail:  Wangld001@snnu.edu.cn

Cite this article: 

Yao-Rong Wu(武耀蓉), Cheng-Hui Wang(王成会) Theoretical analysis of interaction between a particle and an oscillating bubble driven by ultrasound waves in liquid 2017 Chin. Phys. B 26 114303

[1] Doinikov A A 2001 Phys. Rev. E 64 026301
[2] Ida M 2003 Phys. Rev. E 67 056617
[3] Doinikov A A 2004 J. Acoust. Soc. Am. 116 821
[4] Hamilton M F, Ilinskii Y A, Meegan G D and Zabolotskaya E A 2005 ARLO 6 207
[5] Ilinskii Y A, Hamilton M F and Zabolotskaya E A 2007 J. Acoust. Soc. Am. 121 786
[6] Chew L W, Klaseboer E, Ohl S W and Khoo B C 2013 Exp. Therm. Fluid Sci. 44 108
[7] Wang C H and Cheng J C 2013 Chin. Phys. B 22 014304
[8] Zou J, Li B and Ji C 2015 Exp. Therm. Fluid Sci. 61 105
[9] Doinikov A A and Bouakaz A 2015 Phys. Rev. E 92 043001
[10] Han R, Zhang A and Liu Y L 2015 Ocean. Eng. 110 325
[11] Daemi M, Rahni M T and Massah H 2015 Chin. Phys. B 24 024302
[12] Li S and Ni B Y 2016 Eng. Anal. Bound. Elem. 68 63
[13] Shi J, Yang D S, Shi S G, Hu B, Zhang H Y and Hu S Y 2016 Chin. Phys. B 25 024304
[14] Gumnlya M, Utikar R P, Evans G M, Joshi J B and Pareek V 2017 Chem. Eng. Sci. 166 1
[15] Liang J F, Wang X, Yang J and Gong L X 2017 Ultrasonics 75 58
[16] Pishchalnikov Y A, Sapozhnikov O A, Bailey M R, Williams J C, Cleveland R O, Colonius T, Crum L A, Evan A P and McAteer J A 2003 J. Endourol 17 435
[17] Maxwell R, Ata S, Wanless E J and Moreno-Atanasio R 2012 J. Colloid Interface Sci. 381 1
[18] Mizushima Y, Nagami Y, Nakamara Y and Saito T 2013 Chem. Eng. Sci. 93 395
[19] Li H P, Afacan A, Liu Q X and Xu Z H 2015 Miner. Eng. 84 106
[20] Vazirizadeh A, Bouchard J and Chen Y 2016 Int. J. Miner. Process. 157 163
[21] Zhang Y N, Qian Z D, Ji B and Wu Y L 2016 Renew. Sust. Energ. Rev. 56 303
[22] Hay T A, Hamilton M F, Ilinskii Y A and Zabolotskaya E A 2009 J. Acoust. Soc. Am. 125 1331
[23] Li S, Han R and Zhang A M 2016 J. Fluids Struct. 65 333
[24] van der Meer S M, Dollet B, Voormolen M M, Chin C T, Bouakaz A, de Jong N, Versluis M and Lohse D 2007 J. Acoust. Soc. Am. 121 648
[25] Magnaudet J and Legendre D 1998 Phys. Fluids 10 550
[1] Comparison of helium bubble formation in F82H, ODS, SIMP and T91 steels irradiated by Fe and He ions simultaneously
Bingsheng Li(李炳生), Zhen Yang(杨振), Shuai Xu(徐帅), Kongfang Wei (魏孔芳), Zhiguang Wang(王志光), Tielong Shen(申铁龙), Tongmin Zhang(张桐民), and Qing Liao(廖庆). Chin. Phys. B, 2021, 30(3): 036102.
[2] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[3] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[4] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[5] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[6] Functionalized magnetic nanoparticles for drug delivery in tumor therapy
Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳). Chin. Phys. B, 2021, 30(1): 017502.
[7] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[8] Computation and analysis of light emission in two-bubble sonoluminescence
Jin-Fu Liang(梁金福), Xue-You Wu(吴学由), Yu An(安宇), Wei-Zhong Chen(陈伟中), Jun Wang(王军). Chin. Phys. B, 2020, 29(9): 097801.
[9] Active Brownian particles simulated in molecular dynamics
Liya Wang(王丽雅), Xinpeng Xu(徐新鹏), Zhigang Li(李志刚), Tiezheng Qian(钱铁铮). Chin. Phys. B, 2020, 29(9): 090501.
[10] Inversion method of bubble size distribution based on acoustic nonlinear coefficient measurement
Jie Shi(时洁), Yulin Liu(刘宇林), Shengguo Shi(时胜国), Anding Deng(邓安定), Hongdao Li(李洪道). Chin. Phys. B, 2020, 29(8): 084301.
[11] Effects of microwave oxygen plasma treatments on microstructure and Ge-V photoluminescent properties of diamond particles
Ling-Xiao Sheng(盛凌霄), Cheng-Ke Chen(陈成克), Mei-Yan Jiang(蒋梅燕), Xiao Li(李晓), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(8): 088101.
[12] Effect of weak disorder in multi-Weyl semimetals
Zhen Ning(宁震), Bo Fu(付博), Qinwei Shi(石勤伟), Xiaoping Wang(王晓平). Chin. Phys. B, 2020, 29(7): 077202.
[13] Simulation of microswimmer hydrodynamics with multiparticle collision dynamics
Andreas Zöttl. Chin. Phys. B, 2020, 29(7): 074701.
[14] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[15] Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band
Tao Xie(谢涛), Meng-Ting Chen(陈梦婷), Jian Chen(陈健), Feng Lu(陆风), Da-Wei An(安大伟). Chin. Phys. B, 2020, 29(7): 074102.
No Suggested Reading articles found!