Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 087502    DOI: 10.1088/1674-1056/25/8/087502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetocaloric and magnetic properties of La2NiMnO6 double perovskite

Masrour R, Jabar A
Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, P. O. Box 63 46000, Safi, Morocco
Abstract  The magnetic effect and the magnetocaloric effect in La2NiMnO6(LNMO) double perovskite are studied using the Monte Carlo simulations. The magnetizations, specific heat values, and magnetic entropies are obtained for different exchange interactions and external magnetic fields. The adiabatic temperature is obtained. The transition temperature is deduced. The relative cooling power is established with a fixed value of exchange interaction. According to the master curve behaviors for the temperature dependence of ΔSmmax predicted for different maximum fields, in this work it is confirmed that the paramagnetic-ferromagnetic phase transition observed for our sample is of a second order. The near room-temperature interaction and the superexchange interaction between Ni and Mn are shown to be due to the ferromagnetism of LNMO.
Keywords:  oxides magnetocaloric      Monte Carlo simulation specific heat      magnetic properties  
Received:  06 February 2016      Revised:  30 March 2016      Published:  05 August 2016
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  05.10.Ln (Monte Carlo methods)  
Corresponding Authors:  Masrour R     E-mail:  rachidmasrour@hotmail.com

Cite this article: 

Masrour R, Jabar A Magnetocaloric and magnetic properties of La2NiMnO6 double perovskite 2016 Chin. Phys. B 25 087502

[1] Flerov I N, Gorev M V, Aleksandrov K S, Tressaud A, Grannec J and Couzi M 1998 Mater. Sci. Eng. 24 81
[2] Anderson M T, Greenwood K B, Taylor G A and Poeppelmeier K R 1993 Prog. Solid State Chem. 22 197
[3] Booth R J, Fillman R, Whitaker H, Nag A, Tiwari R M, Ramanujachary K V, Gopalakrishnan J and Lofland S E 2009 Mater. Res. Bull. 44 1559
[4] Rogado N S, Li J, Sleight A W and Subramanian M A 2005 Adv. Mater. 17 2225
[5] Dass R I, Yan J Q and Goodenough J B 2003 Phys. Rev. B 68 064415
[6] Joseph V L, Joy P A, Date S K and Gopinath C S 2002 Phys. Rev. B 65 184416
[7] Sanchez M C, Garcia J, Blasco J, Subias G and Perez-Cacho J 2002 Phys. Rev. B 65 144409
[8] Zhang Y, Ji V and Xu K W 2012 Physica B 407 2617
[9] Wang T, Shi W Z, Fang X D, Dong W W and Tao R H 2010 J. Sol-Gel Sci. Technol. 53 655
[10] Hashisaka M, Kan B, Masuno A, Takano M and Shimakawa Y 2006 Appl. Phys. Lett. 89 032504
[11] Moure C and Pena O 2013 J. Magn. Magn. Mater. 337-338 1
[12] Matar S F, Subramanian M A, Villesuzanne A, Eyert V and Whangbo M H 2007 J. Magn. Magn. Mater. 308 116
[13] Goodenough J B, Wold A, Arnott R J and Menyuk N 1961 Phys. Rev. 124 373
[14] Blasse G 1965 J. Phys. Chem. Solids 26 1969
[15] Choudhury D, Mandal P, Mathieu R, Hazarika A, Rajan S, Sundaresan A, Waghmare U V, Knut R, Karis O, Nordblad P and Sarma D D 2012 Phys. Rev. Lett. 108 127201
[16] Nautiyal P, Motin Seikh M, Pralong V and Kundu A K 2013 J. Magn. Magn. Mater. 347 111
[17] Lv J P, Deng Y J and Chen Q H 2011 Phys. Rev. E 84 021125
[18] Ding D, Zhang Y Q and Xia L 2015 Chin. Phys. Lett. 32 106101
[19] Xue D, Ying Z G, Suo X W, Jia H Y and Feng H 2015 Acta Phys. Sin. 64 177502 (in Chinese)
[20] Masrour R, Jabar A, Benyoussef A, Hamedoun M and Hlil E K 2016 J. Magn. Magn. Mater. 401 91
[21] Zhou S, Shi L, Yang H and Zhao J 2007 Appl. Phys. Lett. 91 172505
[22] Wang X, Sui Y, Li Y, Li X L, Wang Z Y, Liu Z, Su W and Tang J 2009 Appl. Phys. Lett. 95 252502
[23] Wold A, Arnott R J and Goodenough J 1958 Appl. Phys. Berl. 29 387
[24] Goodenough J B 1955 Phys. Rev. 100 564
[25] Sonobe M and Asai K 1992 J. Phys. Soc. Jpn. 61 4193
[26] Manh T V, Ho T A, Thanh T D, Phan T L, Phan M H and Yu S C 2015 IEEE Trans. Magnetic. 51 2400304
[27] Luo X, Sun Y P, Wang B, Zhu X B, Song W H, Yang Z R and Dai J M 2009 Solid State Commun. 149 810
[28] Guo Z B, Du Y W, Zhu J S, Huang H, Ding W P and Feng D 1997 Phys. Rev. Lett. 78 1142
[29] Wang Z M, Ni G, Xu Q Y, Sang H and Du Y W 2001 J. Appl. Phys. 90 5689
[30] Murthy K J, Chandrasekhar K D, Mahana S, Topwal D and Venimadhav A 2015 J. Phys. D:Appl. Phys. 48 355001
[31] Tang T, Gu K M, Cao Q Q, Wang D H, Zang S Y and Du Y W 2000 J. Magn. Magn. Mater. 222 110
[32] Kitanovski A and Egolf P W 2006 Int. J. Refrig. 29 3
[33] Guo H Z, Burgess J, Ada E, Street S, Gupta A, Iliev M N, Kellock A J, Magen C, Varela M and Pennycook S J 2008 Phys. Rev. B 77 174423
[34] Yu X, Asaka T, Tomioka Y, Tsuruta C, Naai T, Kimoto K, Kaneko Y, Tokura Y and Matsui Y 2005 J. Electron Microsc. 54 61
[35] Cubrovic M, Zaanen J and Schalm K 2009 Science 325 439
[36] Pfleiderer C, McMullan G J, Julian S R and Lonzarich G G 1997 Phys. Rev. B 55 8330
[1] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[2] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[3] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[4] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[5] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[6] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[7] Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes
Qian Zhao(赵倩), Xin-Xin He(何鑫鑫), Francois-Jacques Morvan(李文瀚), Guo-Ping Zhao(赵国平), Zhu-Bai Li(李柱柏). Chin. Phys. B, 2020, 29(3): 037501.
[8] Electronic shell study of prolate Lin(n =15-17) clusters: Magnetic superatomic molecules
Lijuan Yan(闫丽娟), Jianmei Shao(邵健梅), and Yongqiang Li(李永强). Chin. Phys. B, 2020, 29(12): 125101.
[9] High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process
Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), and Bao-Gen Shen(沈保根)†. Chin. Phys. B, 2020, 29(10): 107504.
[10] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[11] Off-axis electron holography of manganite-based heterojunctions: Interface potential and charge distribution
Zhi-Bin Ling(令志斌), Gui-Ju Liu(刘桂菊), Cheng-Peng Yang(杨成鹏), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜). Chin. Phys. B, 2019, 28(4): 046101.
[12] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[13] Enhanced structural and magnetic properties of microwave sintered Li-Ni-Co ferrites prepared by sol-gel method
Nandeibam Nilima, M Maisnam, Sumitra Phanjoubam. Chin. Phys. B, 2019, 28(2): 026101.
[14] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
[15] Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes
Meng Du(杜萌), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Zhong-Po Zhou(周忠坡), Shuo-Xue Jin(靳硕学), Bao-Yi Wang(王宝义). Chin. Phys. B, 2018, 27(2): 027805.
No Suggested Reading articles found!