CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetoelectric memory effect in the Y-type hexaferrite BaSrZnMgFe12O22 |
Fen Wang(王芬)1,2, Shi-Peng Shen(申世鹏)2, Young Sun(孙阳)2 |
1 Chinese Aeronautical Establishment, Beijing 100012, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We report on the magnetic and magnetoelectric properties of the Y-type hexaferrite BaSrZnMgFe12O22, which undergoes transitions from a collinear ferrimagnetic phase to a proper screw phase at 310 K and to a longitudinal conical phase at 45 K. Magnetic and electric measurements revealed that the magnetic structure with spiral spin order can be modified by applying a magnetic field, resulting in magnetically controllable electric polarization.It was observed that BaSrZnMgFe12O22 exhibits an anomalous magnetoelectric memory effect: the ferroelectric state can be partially recovered from the paraelectric phase with collinear spin structure by reducing magnetic field at 20 K. We ascribe this memory effect to the pinning of multiferroic domain walls, where spin chirality and structure are preserved even in the nonpolar collinear spin state.
|
Received: 27 April 2016
Revised: 14 June 2016
Accepted manuscript online:
|
PACS:
|
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
75.50.-y
|
(Studies of specific magnetic materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11534015 and 51371193). |
Corresponding Authors:
Young Sun
E-mail: youngsun@iphy.ac.cn
|
Cite this article:
Fen Wang(王芬), Shi-Peng Shen(申世鹏), Young Sun(孙阳) Magnetoelectric memory effect in the Y-type hexaferrite BaSrZnMgFe12O22 2016 Chin. Phys. B 25 087503
|
[1] |
Hill N A 2000 J. Phys. Chem. B 104 6694
|
[2] |
Spaldin N A and Fiebig M 2005 Science 309 391
|
[3] |
Fiebig M 2005 J. Phys. D:Appl. Phys. 38 R123
|
[4] |
Shang D S, Chai Y S, Cao Z X, Lu J and Sun Y 2015 Chin. Phys. B 24 068402
|
[5] |
Yao X F and Zhang J X 2014 Physics 43 227 (in Chinese)
|
[6] |
Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55
|
[7] |
Lawes G, Harris A B, Kimura T, Rogado N, Cava R J, Aharony A, Entin-Wohlman O, Yildirim T, Kenzelmann M, Broholm C and Ramirez A P 2005 Phys. Rev. Lett. 95 087205
|
[8] |
Heyer O, Hollmann N, Klassen I, Jodlauk S, Bohaty L, Becker P, Mydosh J A, Lorenz T and Khomskii D 2006 J. Phys.:Condens. Matter 18 L471
|
[9] |
Yamasaki Y, Miyasaka S, Kaneko Y, He J P, Arima T and Tokura Y 2006 Phys. Rev. Lett. 96 207204
|
[10] |
Katsura H, Nagaosa N and Balatsky A V 2005 Phys. Rev. Lett. 95 057205
|
[11] |
Sergienko I A and Dagotto E 2006 Phys. Rev. B 73 094434
|
[12] |
Kimura T, Lawes G and Ramirez A P 2005 Phys. Rev. Lett. 94 137201
|
[13] |
Ishiwata S, Taguchi Y, Murakawa H, Onose Y and Tokura Y 2008 Science 319 1643
|
[14] |
Chun S H, Chai Y S, Oh Y S, Jaiswal-Nagar D, Haam S Y, Kim I, Lee B, Nam D H, Ko K T, Park J H, Chung J H and Kim K H 2010 Phys. Rev. Lett. 104 037204
|
[15] |
Tokunaga Y, Kaneko Y, Okuyama D, Ishiwata S, Arima T, Wakimoto S, Kakurai K, Taguchi Y and Tokura Y 2010 Phys. Rev. Lett. 105 257201
|
[16] |
Kitagawa Y, Hiraoka Y, Honda T, Ishikura T, Nakamura H and Kimura T 2010 Nat. Mater. 9 797
|
[17] |
Hiraoka Y, Nakamura H, Soda M, Wakabayashi Y and Kimura T 2011 J. Appl. Phys. 110 033920
|
[18] |
Okumura K, Ishikura T, Soda M, Asaka T, Nakamura H, Wakabayashi Y and Kimura T 2011 Appl. Phys. Lett. 98 212504
|
[19] |
Wang F, Zou T, Yan L Q, Liu Y and Sun Y 2012 Appl. Phys. Lett. 100 122901
|
[20] |
Shen S P, Yan L Q, Chai Y S, Cong J Z and Sun Y 2014 Appl. Phys. Lett. 104 032905
|
[21] |
Shen S P, Chai Y S, Cong J Z, Sun P, Lu J, Yan L Q, Wang S G and Sun Y 2014 Phys. Rev. B 90 180404
|
[22] |
Song Y Q, Fang Y, Wang L Y, Zhou W P, Cao Q Q, Wang D H and Du Y W 2014 J. Appl. Phys. 115 093905
|
[23] |
Hirose S, Haruki K, Ando A and Kimura T 2014 Appl. Phys. Lett. 104 022907
|
[24] |
Chun S H, Chai Y S, Jeon B G, Kim H J, Oh Y S, Kim I, Kim H, Jeon B J, Haam S Y, Park J Y, Lee S H, Chung J H, Park J H and Kim K H 2012 Phys. Rev. Lett. 108 177201
|
[25] |
Chai Y S, Kwon S, Chun S H, Kim I, Jeon B G, Kim K H and Lee S 2014 Nat. Commun. 5 4208
|
[26] |
Shen S P, Chai Y S and Sun Y 2015 Sci. Rep. 5 8254
|
[27] |
Taniguchi K, Abe N, Ohtani S, Umetsu H and Arima T 2008 Appl. Phys. Express 1 031301
|
[28] |
Sagayama H, Taniguchi K, Abe N, Arima T, Nishikawa Y, Yano S, Kousaka Y, Akimitsu J, Matsuura M and Hirota K 2009 Phys. Rev. B 80 180419
|
[29] |
Ishiwata S, Taguchi Y, Tokunaga Y, Murakawa H, Onose Y and Tokura Y 2009 Phys. Rev. B 79 180408
|
[30] |
Momozawa N, Nagao Y, Utsumi S, Abe M and Yamaguchi Y 2001 J. Phys. Soc. Jpn. 70 2724
|
[31] |
Momozawa N, Yamaguchi Y, Takei H and Mita M 1985 J. Phys. Soc. Jpn. 54 771
|
[32] |
Utsumi S, Yoshiba D and Momozawa N 2007 J. Phys. Soc. Jpn. 76 034704
|
[33] |
Xu F, Bai Y, Ai F and Qiao L J 2008 Chin. Phys. B 17 4652
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|