Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 086302    DOI: 10.1088/1674-1056/25/8/086302
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural, elastic, electronic, and thermodynamic properties of MgAgSb investigated by density functional theory

Jun-Fei Wang(王俊斐)1, Xiao-Nan Fu(富笑男)1, Xiao-Dong Zhang(张小东)1,2, Jun-Tao Wang(王俊涛)1, Xiao-Dong Li(李晓东)1, Zhen-Yi Jiang(姜振益)2
1 College of Science, Henan University of Technology, Zhengzhou 450001, China;
2 Institute of Modern Physics, Northwest University, Xi'an 710069, China
Abstract  The structural, elastic, electronic, and thermodynamic properties of thermoelectric material MgAgSb in γ, β, α phases are studied with first-principles calculations based on density functional theory. The optimized lattice constants accord well with the experimental data. According to the calculated total energy of the three phases, the phase transition order is determined from α to γ phase with cooling, which is in agreement with the experimental result. The physical properties such as elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor are also discussed and analyzed, which indicates that the three structures are mechanically stable and each has a ductile feature. The Debye temperature is deduced from the elastic properties. The total density of states (TDOS) and partial density of states (PDOS) of the three phases are investigated. The TDOS results show that the γ phase is most stable with a pseudogap near the Fermi level, and the PDOS analysis indicates that the conduction band of the three phases is composed mostly of Mg-3s, Ag-4d, and Sb-5p. In addition, the changes of the free energy, entropy, specific heat, thermal expansion of γ-MgAgSb with temperature are obtained successfully. The obtained results above are important parameters for further experimental and theoretical tuning of doped MgAgSb as a thermoelectric material at high temperature.
Keywords:  first-principles      elastic properties      electronic structure      thermodynamic properties     
Received:  23 January 2016      Published:  05 August 2016
PACS:  63.20.dk (First-principles theory)  
  62.20.D- (Elasticity)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  05.70.-a (Thermodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504088), the Fund from Henan University of Technology, China (Grant Nos. 2014YWQN08 and 2013JCYJ12), the Natural Science Fund from the Henan Provincial Education Department, China (Grant No. 16A140027), the Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2013JQ1018 and 15JK1759), and the Science Foundation of Northwest University of China (Grant No. 14NW23).
Corresponding Authors:  Xiao-Dong Zhang     E-mail:  zhangxiaodong@nwu.edu.cn

Cite this article: 

Jun-Fei Wang(王俊斐), Xiao-Nan Fu(富笑男), Xiao-Dong Zhang(张小东), Jun-Tao Wang(王俊涛), Xiao-Dong Li(李晓东), Zhen-Yi Jiang(姜振益) Structural, elastic, electronic, and thermodynamic properties of MgAgSb investigated by density functional theory 2016 Chin. Phys. B 25 086302

[1] Galanakis I, Mavropoulos P and Dederichs P H 2006 J. Phys. D:Appl. Phys. 39 765
[2] Nanda B R K and Dasgupta I 2003 J. Phys.:Condens. Matter 15 7307
[3] Yang J, Li H, Wu T, Zhang W, Chen L and Yang J 2008 Adv. Funct. Mater. 18 2880
[4] Riffat S B and Ma X 2003 Appl. Therm. Eng. 23 913e935
[5] Aliev F G, Kozyrkov V V, Moshchalkov V V, Scolozdra R V, Durczewski K and Für Z 1990 Physica B:Condens. Matter 80 353e357
[6] Ogut S and Rabe K M 1995 Phys. Rev. B 51 66627e10453
[7] Sawai W A, Lin H, Markiewicz R S, Wray L A, Xia Y, Xu S Y, Hasan M Z and Bansil A 2010 Phys. Rev. B 82 125208
[8] Kirkham M J, Santos A M and Rawn C J 2012 Phys. Rev. B 85 144120.
[9] Ying P J, Liu X H, Fu C G, Yue X Q, Xie H H, Zhao X B, Zhang W Q and Zhu T J 2015 Chem. Mater. 27 909
[10] Zhao H, Sui J, Tang Z, Lan Y, Jie Q, Kraemer D, McEnaney K, Guloy A, Chen G and Ren Z 2014 Nano Energy 7 97
[11] Kraemer D, Sui J, McEnaney K, Zhao H, Jie Q, Ren Z F and Chen G 2015 Energy Environ. Sci. 8 1299
[12] Shuai J, Kim H S, Lan Y, Chen S, Liu Y, Zhao H, Sui J and Ren Z 2015 Nano Energy 11 640
[13] Frost B R T and Raynor G V 1950 Proc. R. Soc. London A 203 132
[14] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[15] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[16] Blöchl P E 1994 Phys. Rev. B 50 17953
[17] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[18] Roza A O, Perez D A and Luanea V 2011 Comput. Phys. Commun. 182 2232
[19] Miao N H and Ghosez P 2015 J. Phys. Chem. C 119 14017
[20] Yu Y, Chen C L, Zhao G D, Zhen X L and Zhu X H 2014 Chin. Phys. B 23 106301
[21] Chen B S, Li Y Z, Guan X Y, Wang C, Wang C X and Gao Z Y 2015 Comput. Mater. Sci. 105 66
[22] Zafar M, Ahmed S, Shakil M, Choudhary M A and Mahmood K 2015 Chin. Phys. B 24 076106
[23] Bouhemadou A, Zerarga F, Almuhayya A and Omran S B 2011 Mater. Res. Bull. 46 2252
[24] Voigt W 1928 Lehrbuch der Kristallphysik, Teubner, Leipzig
[25] Reuss A 1929 "Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitaettsbediengung fuer EinKristalle", Z. Angew. Math. Mech. 9 49
[26] Wang J F, Gao A H, Chen W Z, Zhang X D, Zhou B and Jiang Z Y 2013 J. Magn. Magn. Mater. 333 93
[27] Duan J, Zhou T, Zhang L, Du J G, Jiang G and Wang H B 2015 Chin. Phys. B 24 096201
[28] Pugh S F 1954 Philos. Mag. 45 823
[29] Guechi A, Merabet A and Chegaar M 2015 J. Alloys Compd. 623 219
[30] Lu Q, Zhang H Y, Chen Y, Chen X Y and Ji G F 2016 Chin. Phys. B 25 026401
[31] Zhang W, Chen Q Y, Zeng Z Y and Cai L C 2015 Chin. Phys. B 24 107101
[32] Li D D, Zhao H Z, Li S M, Wei B P, Shuai J and Shi C L 2015 Adv. Funct. Mater. 25 12
[33] Mehl M J, Osburn J E, Papaconstantopoulos D A and Klein B M 1999 Phys. Rev. B 41 10311
[34] Feng S Q, Li J Y and Cheng X L 2015 Chin. Phys. B 24 036301
[35] Daho S, Ameri M, Douri Y A, Bensaid D, Varshney D and Ameri I 2016 Mater. Sci. Semicond. Process. 41 102
[1] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[2] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[3] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[4] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[5] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[6] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[7] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[8] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[9] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[10] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[11] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[12] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[13] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[14] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[15] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
No Suggested Reading articles found!