Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 078202    DOI: 10.1088/1674-1056/25/7/078202
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Ceramic synthesis of 0.08BiGaO3-0.90BaTiO3-0.02LiNbO3 under high pressure and high temperature

Hui Jin(金慧)1, Yong Li(李勇)1, Mou-Sheng Song(宋谋胜)1, Lin Chen(陈琳)1, Xiao-Peng Jia(贾晓鹏)2, Hong-An Ma(马红安)2
1 Physical and Applied Engineering Department, Tongren University, Tongren 554300, China;
2 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  In this paper, the preparation of 0.08BiGaO3-0.90BaTiO3-0.02LiNbO3 is investigated at pressure 3.8 GPa and temperature 1100-1200 ℃. Experimental results indicate that not only is the sintered rate more effective, but also the sintered temperature is lower under high pressure and high temperature than those of under normal pressure. It is thought that the adscititious pressure plays the key role in this process, which is discussed in detail. The composition and the structure of the as-prepared samples are recorded by XRD patterns. The result shows that the phases of BaTiO3, BaBiO2.77, and Ba2Bi4Ti5O18 with piezoelectric ceramic performance generate in the sintered samples. Furthermore, the surface morphology characteristics of the typical samples are also investigated using a scanning electron microscope. It indicates that the grain size and surface structure of the samples are closely related to the sintering temperature and sintering time. It is hoped that this study can provide a new train of thought for the preparation of lead-free piezoelectric ceramics with excellent performance.
Keywords:  lead-free piezoelectric ceramics      high pressure and high temperature      morphology  
Received:  27 January 2016      Revised:  07 March 2016      Published:  05 July 2016
PACS:  82.45.Aa (Electrochemical synthesis)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51172089), the Natural Science Foundation of Education Department of Guizhou Province, China (Grant Nos. KY [2013]183 and LH [2015]7232), and the Research Fund for the Doctoral Program of Tongren University, China (Grant No. DS1302).
Corresponding Authors:  Yong Li     E-mail:  likaiyong6@163.com

Cite this article: 

Hui Jin(金慧), Yong Li(李勇), Mou-Sheng Song(宋谋胜), Lin Chen(陈琳), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安) Ceramic synthesis of 0.08BiGaO3-0.90BaTiO3-0.02LiNbO3 under high pressure and high temperature 2016 Chin. Phys. B 25 078202

[1] Janas V F and Safari A 1995 J. Am. Ceram. Soc. 78 2945
[2] Li K, Pang G, Chan H L W, Choy C L and Li J H 2004 J. Appl. Phys. 95 5691
[3] Zhen Y H and Li J F 2008 J. Appl. Phys. 103 084119
[4] Zhao M L, Wang C L, Wang J F, et al. 2004 Acta Phys. Sin. 53 2357 (in Chinese)
[5] Hou Y D, Zhu M K, Wang B, Yan H and Tian C S 2004 Mater. Lett. 58 1508
[6] Kim C S, Kim S K and Lee S Y 2003 Mater. Lett. 57 2233
[7] Xu D, Li W L, Wang L D, Wang W, Cao W P and Fei W D 2014 Acta Materialia 79 84
[8] Ge W W, Cao H, Li J F, Viehland D, Zhang Q H and Luo H S 2009 Appl. Phys. Lett. 95 162903
[9] Wang K and Li J F 2010 Adv. Funct. Mater. 20: 1924
[10] Wang K, Yao F Z, Jo W, Gobeljic D, ShvartsmanV V, Li F and Rödel J 2013 Adv. Funct. Mater. 23 4079
[11] Wang K and Li J F 2007 Appl. Phys. Lett. 91 262902
[12] Dai Y J, Zhang X W and Zhou G Y 2007 Appl. Phys. Lett. 90 262903
[13] Lu N, Yu R, Cheng Z Y, Dai Y J, Zhang X W and Zhu J 2010 Appl. Phys. Lett. 96 221905
[14] Wang L, Ren W, Shi P, Chen X, Wu X and Yao X 2010 Appl. Phys. Lett. 97 072902
[15] Leng S L, Shi W, Long Y and Li G R 2014 Acta Phys. Sin. 63 047102 (in Chinese)
[1] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[2] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[3] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[4] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[5] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[6] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[7] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[8] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[9] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[10] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[11] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[12] Energy stored in nanoscale water capillary bridges formed between chemically heterogeneous surfaces with circular patches
Bin-Ze Tang(唐宾泽), Xue-Jia Yu(余雪佳), Sergey V. Buldyrev, Nicolas Giovambattista§, and Li-Mei Xu(徐莉梅)¶. Chin. Phys. B, 2020, 29(11): 114703.
[13] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[14] Characteristics of urea under high pressure and high temperature
Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(9): 098101.
[15] Exploring alkylthiol additives in PBDB-T:ITIC blended active layers for solar cell applications
Xiang Li(李想), Zhiqun He(何志群), Mengjie Sun(孙盟杰), Huimin Zhang(张慧敏), Zebang Guo(郭泽邦), Yajun Xu(许亚军), Han Li(李瀚), Chunjun Liang(梁春军), Xiping Jing(荆西平). Chin. Phys. B, 2019, 28(8): 088802.
No Suggested Reading articles found!