Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 076602    DOI: 10.1088/1674-1056/25/7/076602
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Diffusion behavior of helium in titanium and the effect of grain boundaries revealed by molecular dynamics simulation

Gui-Jun Cheng(程贵钧)1, Bao-Qin Fu(付宝勤)2, Qing Hou(侯氢)2, Xiao-Song Zhou(周晓松)1, Jun Wang(汪俊)2
1 Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China;
2 Key Laboratory for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065, China
Abstract  The microstructures of titanium (Ti), an attractive tritium (T) storage material, will affect the evolution process of the retained helium (He). Understanding the diffusion behavior of He at the atomic scale is crucial for the mechanism of material degradation. The novel diffusion behavior of He has been reported by molecular dynamics (MD) simulation for the bulk hcp-Ti system and the system with grain boundary (GB). It is observed that the diffusion of He in the bulk hcp-Ti is significantly anisotropic (the diffusion coefficient of the [0001] direction is higher than that of the basal plane), as represented by the different migration energies. Different from convention, the GB accelerates the diffusion of He in one direction but not in the other. It is observed that a twin boundary (TB) can serve as an effective trapped region for He. The TB accelerates diffusion of He in the direction perpendicular to the twinning direction (TD), while it decelerates the diffusion in the TD. This finding is attributable to the change of diffusion path caused by the distortion of the local favorable site for He and the change of its number in the TB region.
Keywords:  diffusion      grain boundary      helium and titanium      molecular dynamics  
Received:  29 January 2016      Revised:  15 March 2016      Published:  05 July 2016
PACS:  66.30.J- (Diffusion of impurities ?)  
  61.72.Mm (Grain and twin boundaries)  
  66.30.-h (Diffusion in solids)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51501119), the Scientific Research Starting Foundation for Younger Teachers of Sichuan University, China (Grant No. 2015SCU11058), the National Magnetic Confinement Fusion Science Program of China (Grant No. 2013GB109002), and the Cooperative Research Project “Research of Diffusion Behaviour of He in Grain Boundary of HCP-Titanium”, China.
Corresponding Authors:  Bao-Qin Fu     E-mail:  bqfu@scu.edu.cn

Cite this article: 

Gui-Jun Cheng(程贵钧), Bao-Qin Fu(付宝勤), Qing Hou(侯氢), Xiao-Song Zhou(周晓松), Jun Wang(汪俊) Diffusion behavior of helium in titanium and the effect of grain boundaries revealed by molecular dynamics simulation 2016 Chin. Phys. B 25 076602

[1] Zhou X S, Liu Q, Zhang L, Peng S M, Long X G, Ding W, Cheng G J, Wang W D, Liang J H and Fu Y Q 2014 In. J. Hydrogen Energ. 39 20062
[2] Zhou X S, Chen G J, Peng S M, Long X G, Liang J H and Fu Y Q 2014 In. J. Hydrogen Energ. 39 11006
[3] Song Y M, Luo S Z, Long X G, An Z, Liu N, Pang H C, Wu X C, Yang B F and Zheng S X 2008 Chin. Sci. Bull. 53 469
[4] Tanyeli I, Laurent M, Daniel M, Mauritius C M V D and Temmerman G D 2015 Sci. Rep. 5 9779
[5] Li C, Greuner H, Yuan Y, Luo G N, Boswirth B, Fu B Q, Xu H Y, Jia Y Z and Liu W 2014 J. Nucl. Mater. 455 201
[6] Wang J, Zhou Y L, Li M and Hou Q 2012 J. Nucl. Mater. 42 7290
[7] Wang J, Hou Q, Sun T Y, Wu Z C, Long X G, Wu X C and Luo S Z 2006 Chin. Phys. Lett. 23 1666
[8] Wang X S, Wu Z W and Hou Q 2015 J. Nucl. Mater. 465 455
[9] Heung L K 1994 Titanium for Long-Term Tritium Storage, WSRD Report: WSRC-TR-94-0596
[10] Nishitani S R, Kawabe H and Aoki M 2001 Mater. Sci. Eng. A-Struct. 312 77
[11] Fu B Q, Liu W and Li Z L 2009 Appl. Surf. Sci. 255 9348
[12] Zhou X S, Long X G, Zhang L, Peng S M and Luo S Z 2010 J. Nucl. Mater. 396 223
[13] Serra A and Bacon D J 1986 Philos. Mag. A 54 793
[14] Wang L, Yang Y, Eisenlohr P, Bieler T R, Crimp M A and Mason D E 2010 Metall. Mater. Trans. A 41 421
[15] Nie J F, Zhu Y M, Liu J Z and Fang X Y 2013 Science 340 957
[16] Yu Q, Shan Z W, Li J, Huang X X, Xiao L, Sun J and Ma E 2010 Nature 463 335
[17] Randle V, Rohrer G S and Hu Y 2008 Scr. Mater. 58 183
[18] Bai X M, Voter A F, Hoagland R G, Nastasi M and Uberuaga B P 2010 Science 327 1631
[19] Fu B Q, Lai W S, Yuan Y, Xu H Y and Liu W 2013 Nucl. Instrum. Meth. B 303 4
[20] Fu B Q, Lai W S, Yuan Y, Xu H Y and Liu W 2012 J. Nucl. Mater. 427 268
[21] Wang J, Hou Q, Sun T Y, Long X G, Wu X C and Luo S Z 2007 J. Appl. Phys. 102 93510
[22] Chen M and Hou Q 2010 Nucl. Sci. Tech. 21 271
[23] Chen M, Hou Q, Wang J, Sun T Y, Long X G and Luo S Z 2008 Solid State Commun. 148 178
[24] Pasianot R and Savino E J 1992 Phys. Rev. B 45 12704
[25] Zhou X W, Johnson R A and Wadley H N G 2004 Phys. Rev. B 69 144113
[26] Zope R R and Mishin Y 2003 Phys. Rev. B 68 24102
[27] Ackland G J 1992 Philos. Mag. A 66 917
[28] Cleri F and Rosato V 1993 Phys. Rev. B 48 22
[29] Kittel C 2005 Introduction to Solid State Physics (New York: John Wiley and Sons)
[30] Pearson W B 1958 A Handbook of Lattice Spacings and Structures of Metals and Alloys (Oxford: Pergamon)
[31] Wang J, Hirth J P and Tome C N 2009 Acta Mater. 57 5521
[32] Young D A, Mcmahan A K and Ross M 1981 Phys. Rev. B 24 5119
[33] Trinkaus H 1983 Radiat. Eff. 78 189
[34] Cowgill D F 2005 Fusion Sci. Technol. 48 539
[35] Zhang B L, Wang J, Li M and Hou Q 2013 J. Nucl. Mater. 438 178
[36] Fu B Q, Xu B, Lai W S, Yuan Y, Xu H Y, Li C, Jia Y Z and Liu W 2013 J. Nucl. Mater. 441 24
[37] Ziegler J F, Biersack J P and Littmark U 1985 The Stopping and Range of Ions in Solid (New York: Pergamon)
[38] Hou Q, Li M, Zhou Y L, Cui J C, Cui Z G and Wang J 2013 Comput. Phys. Commun. 184 2091
[39] Swope W C, Andersen H C, Berens P H and Wilson K R 1982 J. Chem. Phys. 76 637
[40] Legrand B, Treglia G, Desjonqueres M C and Spanjaard D 1986 J. Phys. C-Solid State Phys. 19 4463
[41] Boisvert G and Lewis L J 1996 Phys. Rev. B 54 2880
[42] Vincent-Aublant E, Delaye J M and Van Brutzel L 2009 J. Nucl. Mater. 392 114
[43] Chandrasekhar S 1943 Rev. Mod. Phys. 5 1
[44] Yelon A and Movaghar B 1990 Phys. Rev. Lett. 65 618
[45] Wang Y L, Liu S, Rong L J and Wang Y M 2010 J. Nucl. Mater. 402 55
[1] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[2] Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective
Jiting Tian(田继挺). Chin. Phys. B, 2021, 30(2): 026102.
[3] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[4] 57Fe Mössbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE-Fe-B permanent magnets
Lizhong Zhao(赵利忠), Xuefeng Zhang(张雪峰), Mi Yan(严密), Zhongwu Liu(刘仲武), and Jean-Marc Greneche. Chin. Phys. B, 2021, 30(1): 013302.
[5] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[6] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[7] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[8] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[9] Active Brownian particles simulated in molecular dynamics
Liya Wang(王丽雅), Xinpeng Xu(徐新鹏), Zhigang Li(李志刚), Tiezheng Qian(钱铁铮). Chin. Phys. B, 2020, 29(9): 090501.
[10] Measurement and verification of concentration-dependent diffusion coefficient: Ray tracing imagery of diffusion process
Li Wei(魏利), Wei-Dong Meng(孟伟东), Li-Cun Sun(孙丽存), Xin-Fei Cao(曹新飞), Xiao-Yun Pu(普小云). Chin. Phys. B, 2020, 29(8): 084206.
[11] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[12] Mesoscale eddies and their dispersive environmental impacts in the Persian Gulf
Amin Raeisi, Abbasali Bidokhti, Seyed Mohammad Jafar Nazemosadat, Kamran Lari. Chin. Phys. B, 2020, 29(8): 084701.
[13] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[14] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[15] Understanding the Li diffusion mechanism and positive effect of current collector volume expansion in anode free batteries
Yan Zhuang(庄严), Zheyi Zou(邹喆乂), Bo Lu(吕浡), Yajie Li(李亚捷), Da Wang(王达), Maxim Avdeev, Siqi Shi(施思齐). Chin. Phys. B, 2020, 29(6): 068202.
No Suggested Reading articles found!