Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 074201    DOI: 10.1088/1674-1056/25/7/074201

A method for generating double-ring-shaped vector beams

Huan Chen(陈欢)1, Xiao-Hui Ling(凌晓辉)2, Zhi-Hong Chen(陈知红)1, Qian-Guang Li(李钱光)1, Hao Lv(吕昊)1, Hua-Qing Yu(余华清)1, Xu-Nong Yi(易煦农)1
1 College of Physics and Electronic Information Engineering, Hubei Engineering University, Xiaogan 432000, China;
2 Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421002, China

We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator (SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam-Berry phase (PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases.

Keywords:  vector beam      Pancharatnam-Berry phase element      geometric phase  
Received:  30 November 2015      Revised:  01 February 2016      Published:  05 July 2016
PACS:  42.25.-p (Wave optics)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.79.-e (Optical elements, devices, and systems)  

Project supported by the National Natural Science Foundation of China (Grant No. 11547017), the Hubei Engineering University Research Foundation, China (Grant No. z2014001), and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB578).

Corresponding Authors:  Xu-Nong Yi     E-mail:

Cite this article: 

Huan Chen(陈欢), Xiao-Hui Ling(凌晓辉), Zhi-Hong Chen(陈知红), Qian-Guang Li(李钱光), Hao Lv(吕昊), Hua-Qing Yu(余华清), Xu-Nong Yi(易煦农) A method for generating double-ring-shaped vector beams 2016 Chin. Phys. B 25 074201

[1] Zhan Q 2009 Adv. Opt. Photon. 1 1
[2] Beckley A M, Brown T G and Alonso M A 2010 Opt. Express 18 10777
[3] Galvez E J, Khadka S, Schubert W H and Nomoto S 2012 Appl. Opt. 51 2925
[4] Wang X, Ding J, Ni W, Guo C and Wang H 2007 Opt. Lett. 32 3549
[5] Chen H, Hao J, Zhang B, Xu J, Ding J and Wang H 2011 Opt. Lett. 36 3179
[6] Dorn R, Quabis S and Leuchs G 2003 Phys. Rev. Lett. 91 233901
[7] Deng D and Guo Q 2007 Opt. Lett. 32 2711
[8] Hao X, Kuang C, Wang T and Liu X 2010 Opt. Lett. 35 3928
[9] Du F, Zhou Z, Tan Q, Yang C, Zhang X and Zhu L 2013 Chin. Phys. B 22 064202
[10] Chen G, Song F and Wang H 2013 Opt. Lett. 38 3937
[11] Zhang W, Liu S, Li P, Jiao X and Zhao J 2013 Opt. Express 21 974
[12] Qin F, Huang K, Wu J, Jiao J, Luo X, Qiu C and Hong M 2015 Sci. Rep. 5 09977
[13] Cheng Z, Zhou Y, Xia M, Li W, Yang K and Zhou Y 2015 Chin. Phys. Lett. 73 77
[14] Lerman G M, Stern L and Levy U 2010 Opt. Express 18 27650
[15] Beckley A M, Brown T G and Alonso M A 2012 Opt. Express 20 9357
[16] Pohl D 1972 Appl. Phys. Lett. 20 266
[17] Bomzon Z, Kleiner V and Hasman E 2001 Opt. Lett. 26 1424
[18] Kang M, Chen J, Wang X and Wang H 2012 J. Opt. Soc. Am. B 29 572
[19] Yang Y, Dong Y, Zhao C and Cai Y 2013 Opt. Lett. 38 5418
[20] Man Z, Min C, Zhang Y, Shen Z and Yuan X 2013 Laser Phys. 23 105001
[21] Zhou J, Liu Y, Ke Y, Luo H and Wen S 2015 Opt. Lett. 40 3193
[22] He Y, Liu Z, Liu Y, Zhou J, Ke Y, Luo H and Wen S 2015 Opt. Lett. 40 5506
[23] Viswanathan N K and Inavalli V V G K 2009 Opt. Lett. 34 1189
[24] Niziev V G, Chang R S and Nesterov A V 2006 Appl. Opt. 45 8393
[25] Chen S, Zhou X, Liu Y, Ling X, Luo H and Wen S 2014 Opt. Lett. 39 5274
[26] Kozawa Y and Sato S 2006 Opt. Lett. 31 820
[27] Zhang Y, Ding B and Suyama T 2010 Phys. Rev. A 81 023831
[28] Tian B and Pu J 2011 Opt. Lett. 36 2014
[29] Nie Z, Li Z, Shi G, Zhang X, Wang Y and Song Y 2014 Opt. Lasers Eng. 59 93
[30] Tidwell S C, Kim G H and Kimura W D 1993 Appl. Opt. 32 5222
[31] Maurer C, Jesacher A, Fürhapter S, Bernet S and Ritsch-Marte M 2007 New J. Phys. 9 78
[32] Bomzon Z, Biener G, Kleiner V and Hasman E 2002 Opt. Lett. 27 1141
[33] Hasman E, Kleiner V, Biener G and Niv A 2003 Appl. Phys. Lett. 82 328
[34] Marrucci L 2008 Mol. Cryst. Liq. Cryst. 488 148
[35] Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H and Wen S 2014 Opt. Express 22 17207
[36] Liu Y, Ling X, Yi X, Zhou X, Chen S, Ke Y, Luo H and Wen S 2015 Opt. Lett. 40 756
[37] Beresna M, Gecevičius M, Kazansky P G and Gertus T 2011 Appl. Phys. Lett. 98 201101
[38] Beresna M, Gecevičius M and Kazansky P G 2011 Opt. Mater. Express 1 783
[1] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[2] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[3] Multiple trapping using a focused hybrid vector beam
Li Zhang(张莉), Xiaodong Qiu(邱晓东), Lingwei Zeng(曾令伟), Lixiang Chen(陈理想). Chin. Phys. B, 2019, 28(9): 094202.
[4] Controllable photon echo phase induced by modulated pulses and chirped beat detection
Xian-Yang Zhang(张显扬), Shuang-Gen Zhang(张双根), Hua-Di Zhang(张化迪), Xiu-Rong Ma(马秀荣). Chin. Phys. B, 2019, 28(2): 024207.
[5] Observation of geometric phase in a dispersively coupled resonator-qutrit system
Libo Zhang(张礼博), Chao Song(宋超), H Wang(王浩华), Shi-Biao Zheng(郑仕标). Chin. Phys. B, 2018, 27(7): 070303.
[6] Induced modification of geometric phase of a qubit coupled to an XY spin chain by the Dzyaloshinsky–Moriya interaction
Zhang Ai-Ping, Li Fu-Li. Chin. Phys. B, 2013, 22(3): 030308.
[7] Geometric phases in qubit-oscillator system beyond conventional rotating-wave approximation
Wang Yue-Ming,Du Guan,Liang Jiu-Qing. Chin. Phys. B, 2012, 21(4): 044207.
[8] Fidelity susceptibility and geometric phase in critical phenomenon
Tian Li-Jun, Zhu Chang-Qing, Zhang Hong-Biao, Qin Li-Guo. Chin. Phys. B, 2011, 20(4): 040302.
[9] Theoretical investigation of band-gap and mode characteristics of anti-resonance guiding photonic crystal fibres
Yuan Jin-Hui, Sang Xin-Zhu, Yu Chong-Xiu, Xin Xiang-Jun, Zhang Jin-Long, Zhou Gui-Yao, Li Shu-Guang, Hou Lan-Tian. Chin. Phys. B, 2011, 20(2): 024213.
[10] Propagation of cylindrical vector beams in a turbulent atmosphere
Pu Ji-Xiong, Wang Tao, Lin Hui-Chuan, Li Cheng-Liang. Chin. Phys. B, 2010, 19(8): 089201.
[11] Geometric phases and quantum phase transitions in inhomogeneous XY spin-chains: Effect of the Dzyaloshinski-Moriya interaction
Wang Lin-Cheng, Yan Jun-Yan, Yi Xue-Xi. Chin. Phys. B, 2010, 19(4): 040512.
[12] Unconventional geometric phase gate and multiqubit entanglement for hot ions with a frequency-modulated field
Zhong Wen-Xue, Cheng Guang-Ling, Chen Ai-Xi. Chin. Phys. B, 2010, 19(11): 110310.
[13] Critical entanglement and geometric phase of a two-qubitmodel with Dzyaloshinski--Moriya anisotropic interaction
Li Zhi-Jian, Cheng Lu, Wen Jiao-Jin. Chin. Phys. B, 2010, 19(1): 010305.
[14] Operating a geometric quantum gate by external controllable parameters
Ji Ying-Hua, Cai Shi-Hua, Le Jian-Xin, Wang Zi-Sheng. Chin. Phys. B, 2010, 19(1): 010311.
[15] Experimental verification of Foreman dislocation model
Zhao Chun-Wang, Xing Yong-Ming, Bai Pu-Cun. Chin. Phys. B, 2009, 18(6): 2464-2468.
No Suggested Reading articles found!