Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 070304    DOI: 10.1088/1674-1056/25/7/070304
GENERAL Prev   Next  

Entanglement properties between two atoms in the binomial optical field interacting with two entangled atoms

Tang-Kun Liu(刘堂昆)1, Kang-Long Zhang(张康隆)1,2, Yu Tao(陶宇)1, Chuan-Jia Shan(单传家)1, Ji-Bing Liu(刘继兵)1
1 College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China;
2 Hubei Engineering Profession Institute, Huangshi 435004, China
Abstract  The temporal evolution of the degree of entanglement between two atoms in a system of the binomial optical field interacting with two arbitrary entangled atoms is investigated. The influence of the strength of the dipole-dipole interaction between two atoms, probabilities of the Bernoulli trial, and particle number of the binomial optical field on the temporal evolution of the atomic entanglement are discussed. The result shows that the two atoms are always in the entanglement state. Moreover, if and only if the two atoms are initially in the maximally entangled state, the entanglement evolution is not affected by the parameters, and the degree of entanglement is always kept as 1.
Keywords:  quantum optics      quantum entanglement      binomial optical field      negative eigenvalue  
Received:  29 January 2016      Published:  05 July 2016
PACS:  03.65.-w (Quantum mechanics)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB922103) and the National Natural Science Foundation of China (Grant Nos. 11274104 and 11404108).
Corresponding Authors:  Tang-Kun Liu     E-mail:  tkliuhs@163.com

Cite this article: 

Tang-Kun Liu(刘堂昆), Kang-Long Zhang(张康隆), Yu Tao(陶宇), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵) Entanglement properties between two atoms in the binomial optical field interacting with two entangled atoms 2016 Chin. Phys. B 25 070304

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (London: Cambridge Univ. Press)
[2] Plenio M B and Vedral V 1998 Phys. Rev. A 57 1619
[3] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 381
[4] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[5] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2882
[6] Phoenix S J D and Kinght P L 1988 Ann. Phys. 186 381
[7] Wu Y and Yang X X 1997 Phys. Rev. A 56 2443
[8] Wu Y 1996 Phys. Rev. A 54 1586
[9] Fang M F and Zhou G H 1994 Phys. Lett. A 184 397
[10] Liu X J and Fang M F 2002 Chin. Phys. 11 926
[11] Liu X J and Fang M F 2003 Chin. Phys. 12 971
[12] Liu T K, Wang J S, Feng J and Zhan M S 2004 Chin. Phys. 13 0497
[13] Liu T K, Wang J S, Feng J and Zhan M S 2005 Chin. Phys. 14 0536
[14] Liu T K 2006 Chin. Phys. 15 0542
[15] Liu T K 2007 Chin. Phys. 16 3396
[16] Knöll L and Orlowski A 1995 Phys. Rev. A 51 1622
[17] Liu T K, Wang J S, Liu X J and Zhan M S 2000 Acta Phys. Sin. 49 708 (in Chinese)
[18] Jozsa R 1994 J. Mod. Opt. 41 2315
[19] Liu T K, Wang J S, Liu X J and Zhan M S 2000 Acta Opt. Sin. 20 1449 (in Chinese)
[20] Vidal G and Wemer R F 2002 Phys. Rev. A 65 032314
[21] Liu T K, Cheng W W, Shan C J, Gao Y F and Wang J S 2007 Chin. Phys. 16 3697
[22] Wei T C and Nemoto K 2003 Phys. Rev. A 67 022110
[23] Verstraete F, Audenaert K and Moor B D 2001 Phys. Rev. A 64 012316
[24] Xiong H N, Guo H, Jiang J, Chen J and Tang L Y 2006 Acta Phys. Sin. 55 2720 (in Chinese)
[25] Van Enk S J and Hirota O 2001 Phys. Rev. A 64 022313
[26] Wang X G 2002 Phys. A Math. Gen. 35 165
[27] Xia Y J and Guo G C 2004 Chin. Phys. Lett. 21 1877
[28] Zhang X Y and Wang J S 2011 Acta Phys. Sin. 60 090304 (in Chinese)
[29] Wu P P, Shan C J and Liu T K 2015 Int. J. Theor. Phys. 54 1352
[30] Lee J and Kim M S 2000 Phys. Rev. Lett. 84 4236
[1] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[2] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[3] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[4] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[5] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[6] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
[7] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[8] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[9] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[10] Realization of ultralow power phase locking by optimizing Q factor of resonant photodetector
Jin-Rong Wang(王锦荣), Hong-Yu Zhang(张宏宇), Zi-Lin Zhao(赵子琳), and Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(12): 124207.
[11] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[12] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[13] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[14] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[15] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
No Suggested Reading articles found!