Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 070304    DOI: 10.1088/1674-1056/25/7/070304
GENERAL Prev   Next  

Entanglement properties between two atoms in the binomial optical field interacting with two entangled atoms

Tang-Kun Liu(刘堂昆)1, Kang-Long Zhang(张康隆)1,2, Yu Tao(陶宇)1, Chuan-Jia Shan(单传家)1, Ji-Bing Liu(刘继兵)1
1 College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China;
2 Hubei Engineering Profession Institute, Huangshi 435004, China
Abstract  The temporal evolution of the degree of entanglement between two atoms in a system of the binomial optical field interacting with two arbitrary entangled atoms is investigated. The influence of the strength of the dipole-dipole interaction between two atoms, probabilities of the Bernoulli trial, and particle number of the binomial optical field on the temporal evolution of the atomic entanglement are discussed. The result shows that the two atoms are always in the entanglement state. Moreover, if and only if the two atoms are initially in the maximally entangled state, the entanglement evolution is not affected by the parameters, and the degree of entanglement is always kept as 1.
Keywords:  quantum optics      quantum entanglement      binomial optical field      negative eigenvalue  
Received:  29 January 2016      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB922103) and the National Natural Science Foundation of China (Grant Nos. 11274104 and 11404108).
Corresponding Authors:  Tang-Kun Liu     E-mail:  tkliuhs@163.com

Cite this article: 

Tang-Kun Liu(刘堂昆), Kang-Long Zhang(张康隆), Yu Tao(陶宇), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵) Entanglement properties between two atoms in the binomial optical field interacting with two entangled atoms 2016 Chin. Phys. B 25 070304

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (London: Cambridge Univ. Press)
[2] Plenio M B and Vedral V 1998 Phys. Rev. A 57 1619
[3] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 381
[4] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[5] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2882
[6] Phoenix S J D and Kinght P L 1988 Ann. Phys. 186 381
[7] Wu Y and Yang X X 1997 Phys. Rev. A 56 2443
[8] Wu Y 1996 Phys. Rev. A 54 1586
[9] Fang M F and Zhou G H 1994 Phys. Lett. A 184 397
[10] Liu X J and Fang M F 2002 Chin. Phys. 11 926
[11] Liu X J and Fang M F 2003 Chin. Phys. 12 971
[12] Liu T K, Wang J S, Feng J and Zhan M S 2004 Chin. Phys. 13 0497
[13] Liu T K, Wang J S, Feng J and Zhan M S 2005 Chin. Phys. 14 0536
[14] Liu T K 2006 Chin. Phys. 15 0542
[15] Liu T K 2007 Chin. Phys. 16 3396
[16] Knöll L and Orlowski A 1995 Phys. Rev. A 51 1622
[17] Liu T K, Wang J S, Liu X J and Zhan M S 2000 Acta Phys. Sin. 49 708 (in Chinese)
[18] Jozsa R 1994 J. Mod. Opt. 41 2315
[19] Liu T K, Wang J S, Liu X J and Zhan M S 2000 Acta Opt. Sin. 20 1449 (in Chinese)
[20] Vidal G and Wemer R F 2002 Phys. Rev. A 65 032314
[21] Liu T K, Cheng W W, Shan C J, Gao Y F and Wang J S 2007 Chin. Phys. 16 3697
[22] Wei T C and Nemoto K 2003 Phys. Rev. A 67 022110
[23] Verstraete F, Audenaert K and Moor B D 2001 Phys. Rev. A 64 012316
[24] Xiong H N, Guo H, Jiang J, Chen J and Tang L Y 2006 Acta Phys. Sin. 55 2720 (in Chinese)
[25] Van Enk S J and Hirota O 2001 Phys. Rev. A 64 022313
[26] Wang X G 2002 Phys. A Math. Gen. 35 165
[27] Xia Y J and Guo G C 2004 Chin. Phys. Lett. 21 1877
[28] Zhang X Y and Wang J S 2011 Acta Phys. Sin. 60 090304 (in Chinese)
[29] Wu P P, Shan C J and Liu T K 2015 Int. J. Theor. Phys. 54 1352
[30] Lee J and Kim M S 2000 Phys. Rev. Lett. 84 4236
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[5] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[6] Light-shift induced by two unbalanced spontaneous decay rates in EIT (CPT) spectroscopies under Ramsey pulse excitation
Xiaoyan Liu(刘晓艳), Xu Zhao(赵旭), Jianfang Sun(孙剑芳), Zhen Xu(徐震), and Zhengfeng Hu(胡正峰). Chin. Phys. B, 2021, 30(8): 083203.
[7] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[8] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[9] Signal-recycled weak measurement for ultrasensitive velocity estimation
Sen-Zhi Fang(方森智), Yang Dai(戴阳), Qian-Wen Jiang(姜倩文), Hua-Tang Tan(谭华堂), Gao-Xiang Li(李高翔), and Qing-Lin Wu(吴青林). Chin. Phys. B, 2021, 30(6): 060601.
[10] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[11] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[12] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[13] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[14] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[15] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
No Suggested Reading articles found!