Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 058502    DOI: 10.1088/1674-1056/25/5/058502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A novel circuit design for complementary resistive switch-based stateful logic operations

Xiao-Ping Wang(王小平)1,2, Lin Chen(陈林)1,2, Yi Shen(沈轶)1,2, Bo-Wen Xu(徐博文)1,2
1. School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China;
2. Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518000, China
Abstract  Recently, it has been demonstrated that memristors can be utilized as logic operations and memory elements. In this paper, we present a novel circuit design for complementary resistive switch (CRS)-based stateful logic operations. The proposed circuit can automatically write the destructive CRS cells back to the original states. In addition, the circuit can be used in massive passive crossbar arrays which can reduce sneak path current greatly. Moreover, the steps for CRS logic operations using our proposed circuit are reduced compared with previous circuit designs. We validate the effectiveness of our scheme through Hspice simulations on the logic circuits.
Keywords:  memristor      complementary resistive switch      crossbar arrays      logic circuits  
Received:  10 November 2015      Revised:  13 January 2016      Accepted manuscript online: 
PACS:  85.35.-p (Nanoelectronic devices)  
  85.25.Hv (Superconducting logic elements and memory devices; microelectronic circuits)  
  87.85.Qr (Nanotechnologies-design)  
  84.32.-y (Passive circuit components)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61374150 and 11271146), the State Key Program of the National Natural Science Foundation of China (Grant No. 61134012), the Doctoral Fund of Ministry of Education of China (Grant No. 20130142130012), and the Science and Technology Program of Shenzhen City, China (Grant No. JCYJ20140509162710496).
Corresponding Authors:  Xiao-Ping Wang     E-mail:  wangxiaoping@hust.edu.cn

Cite this article: 

Xiao-Ping Wang(王小平), Lin Chen(陈林), Yi Shen(沈轶), Bo-Wen Xu(徐博文) A novel circuit design for complementary resistive switch-based stateful logic operations 2016 Chin. Phys. B 25 058502

[1] Kuhn K J 2012 IEEE Trans. Electron Device 59 1813
[2] Chua L O 1971 IEEE Trans. Circuit Theory 18 507
[3] Strukov D B, Snider G S, Stewart G R and Williams R S 2008 Nature 453 80
[4] Fan X, Chen H P, Wang Q, Wang Y Q, Lv S L, Liu Y, Song Z T, Feng G M and Liu B 2015 Chin. Phys. Lett. 6 068301
[5] Tang S Y, Li R, Ou X, Xu H N, Xia Y D, Yin J and Liu Z G 2014 Chin. Phys. Lett. 7 078503
[6] Shin S, Kim K and Kang S M 2011 IEEE Trans. Nanotechnol. 10 266
[7] Pershin Y V and Ventra M D 2010 IEEE Trans. Circuits Syst. I 57 1857
[8] Tian X B and Xu H 2013 Chin. Phys. B 22 088501
[9] Li Z J and Zeng Y C 2013 Chin. Phys. B 22 040502
[10] Yuan F, Wang G Y and Wang X Y 2015 Chin. Phys. B 24 60506
[11] Buscarino A, Fortuna L, Frasca M and Gambuzza L V 2012 An Interdisciplinary Journal of Nonlinear Science 22 023136
[12] Pershin Y V and Ventra M D 2010 Neural Netw. 23 881
[13] Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R and Williams R S 2010 Nature 464 873
[14] Shin S, Kim K and Kang S M 2011 IEEE Trans. Circuits Syst. II 58 442
[15] Yang Y, Mathew J, Pradhan D K, Ottavi M and Pontarelli S 2014 Design, Automation and Test in Europe Conference and Exhibition, pp. 1-4
[16] Zhu X, Yang X, Wu C, Xiao N, Wu J and Yi X 2013 IEEE Trans. Circuits Syst. II 60 682
[17] Kvatinsky S, Satat G, Wald N, Friedman E G, Kolodny A and Weiser U C 2014 IEEE Trans. Very Large Scale Integr. Syst. (VLSI) 22 2054
[18] Linn E, Rosezin R, Tappertzhofen S, Bottger U and Waser R 2012 Nanotechnology 23 305205
[19] Xia Q, Robinett, Cumbie M W, Banerjee N, Cardinali T J, Yang J J, Wu W, Li X, Tong W M and Strukov D B 2009 Nano Lett. 9 3640
[20] Ho Y, Huang G M and Li P 2010 IEEE Trans. Circuits Syst. I 58 724
[21] Jung C M, Choi J M and Min K S 2012 IEEE Trans. Nanotechnol. 11 611
[22] Zidan M A, Eltawil A M, Kurdahi F, Fahmy H and Salama K N 2014 IEEE Trans. Nanotechnol. 13 274
[23] Zidan M A, Omran H, Sultan A, Fahmy H and Salama K N 2015 IEEE Trans. Nanotechnol. 14 3
[24] Linn E, Rosezin R, Kugeler C and Waser R 2010 Nat. Mater. 9 403
[1] SBT-memristor-based crossbar memory circuit
Mei Guo(郭梅), Ren-Yuan Liu(刘任远), Ming-Long Dou(窦明龙), and Gang Dou(窦刚). Chin. Phys. B, 2021, 30(6): 068402.
[2] Suppression of ferroresonance using passive memristor emulator
S Poornima. Chin. Phys. B, 2021, 30(6): 068401.
[3] Digital and analog memory devices based on 2D layered MPS3 ( M=Mn, Co, Ni) materials
Guihua Zhao(赵贵华), Li Wang(王力), Xi Ke(柯曦), and Zhiyi Yu(虞志益). Chin. Phys. B, 2021, 30(4): 047303.
[4] Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲). Chin. Phys. B, 2021, 30(4): 047301.
[5] A method of generating random bits by using electronic bipolar memristor
Bin-Bin Yang(杨彬彬), Nuo Xu(许诺), Er-Rui Zhou(周二瑞), Zhi-Wei Li(李智炜), Cheng Li(李成), Pin-Yun Yi(易品筠), Liang Fang(方粮). Chin. Phys. B, 2020, 29(4): 048505.
[6] Optoelectronic memristor for neuromorphic computing
Wuhong Xue(薛武红), Wenjuan Ci(次文娟), Xiao-Hong Xu(许小红), Gang Liu(刘钢). Chin. Phys. B, 2020, 29(4): 048401.
[7] Memristor-based vector neural network architecture
Hai-Jun Liu(刘海军), Chang-Lin Chen(陈长林), Xi Zhu(朱熙), Sheng-Yang Sun(孙盛阳), Qing-Jiang Li(李清江), Zhi-Wei Li(李智炜). Chin. Phys. B, 2020, 29(2): 028502.
[8] Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations
Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), and Jia-Jie Ying(应佳捷). Chin. Phys. B, 2020, 29(11): 110503.
[9] Dynamics of the two-SBT-memristor-based chaotic circuit
Mei Guo(郭梅), Meng Zhang(张萌), Ming-Long Dou(窦明龙), Gang Dou(窦刚), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2020, 29(11): 110505.
[10] Memristor-based hyper-chaotic circuit for image encryption
Jiao-Jiao Chen(陈娇娇), Deng-Wei Yan(闫登卫), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2020, 29(11): 110504.
[11] Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions
Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林). Chin. Phys. B, 2019, 28(8): 087303.
[12] Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor
K Usha, P A Subha. Chin. Phys. B, 2019, 28(2): 020502.
[13] Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor
Shuopei Wang(王硕培), Congli He(何聪丽), Jian Tang(汤建), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2019, 28(1): 017304.
[14] A generalized model of TiOx-based memristive devices andits application for image processing
Jiangwei Zhang(张江伟), Zhensen Tang(汤振森), Nuo Xu(许诺), Yao Wang(王耀), Honghui Sun(孙红辉), Zhiyuan Wang(王之元), Liang Fang(方粮). Chin. Phys. B, 2017, 26(9): 090502.
[15] Attempt to generalize fractional-order electric elements to complex-order ones
Gangquan Si(司刚全), Lijie Diao(刁利杰), Jianwei Zhu(朱建伟), Yuhang Lei(雷妤航), Yanbin Zhang(张彦斌). Chin. Phys. B, 2017, 26(6): 060503.
No Suggested Reading articles found!