Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 024209    DOI: 10.1088/1674-1056/25/2/024209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

19-fs pulse generated by supercontinuum compression

Hua-Qiang Zhang(张华强)1, Peng Wang(王鹏)2, Wen-Jun Liu(刘文军)2, Yi-Lei Yao(姚翳蕾)2, Zhi-Jing Xu(徐志敬)1, Jian Li(李健)3
1. School of Information and Electrical Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China;
2. Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, China;
3. School of Physics and Electronic Science, Shandong Normal University, Jinan 250014, China
Abstract  Supercontinuum generation and compression in a length of 50-mm photonic crystal fiber with pulse of nanojoule energy are investigated theoretically and experimentally. Chirped mirror pair is used for dispersion compensation and pulse compression. Pulse characteristics are measured by frequency-resolved optical gating. And 19-fs pulse is generated.
Keywords:  femtosecond phenomena      multilayer mirror      phase compensation      photonic crystal fiber  
Received:  12 May 2015      Revised:  20 August 2015      Published:  05 February 2016
PACS:  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Corresponding Authors:  Wen-Jun Liu     E-mail:  liuwenjun68@siom.ac.cn

Cite this article: 

Hua-Qiang Zhang(张华强), Peng Wang(王鹏), Wen-Jun Liu(刘文军), Yi-Lei Yao(姚翳蕾), Zhi-Jing Xu(徐志敬), Jian Li(李健) 19-fs pulse generated by supercontinuum compression 2016 Chin. Phys. B 25 024209

[1] Zhang L Y, Pu S Z, Yang Z Y, Zhang L Y and Pu S Z 2014 Chin. Phys. Lett. 31 114206
[2] You L F, Ling W J, Li K, Zhang M X, Zuo Y Y and Wang Y S 2014 Acta Phys. Sin. 63 214203 (in Chinese)
[3] Liu Z Y, Shi Y C and Hu B T 2014 Acta Phys. Sin. 63 184206 (in Chinese)
[4] Zhang L, Han H N, Hou L, Yu Z J, Zhu Z, Jia Y L and Wei Z Y 2014 Acta Phys. Sin. 63 194208 (in Chinese)
[5] Heidt A, Rothhardt J, Hartung A, Bartelt H, Rohwer E, Limpert J and Tünnermann A 2011 Opt. Express 19 13873
[6] Jocher C, Eidam T, Hädrich S, Limpert J and Tünnermann A 2012 Opt. Lett. 37 4407
[7] Steinmeyer G and Stibenz G 2006 Appl. Phys. B 82 175
[8] Huang Z Y, Leng Y X and Dai Y 2014 Chin. Phys. B 23 124210
[9] Huang Z Y, Wang D, Leng Y X and Dai Y 2015 Chin. Phys. B 24 014212
[10] Nurhuda M, Suda A, Bohman S, Yamaguchi S and Midorikawa K 2006 Phys. Rev. Lett. 97 153902
[11] Akturk S, Arnold C L, Zhou B and Mysyrowicz A 2009 Opt. Lett. 34 1462
[12] Chen J, Suda A, Takahashi E J, Nurhuda M and Midorikawa K 2008 Opt. Lett. 33 2992
[13] Lanin A, Voronin A A, Stepanov E A, Fedotov A B and Zheltikov A M 2015 Opt. Lett. 40 974
[14] Liang H, Krogen P, Grynko R, Novak O, Chang C L, Stein G J, Weerawarne D, Shim B, Kärtner F X and Hong K H 2015 Opt. Lett. 40 1069
[15] Siwicki B, Klimczak M, Soboń G, Sotor J, Pysz D, Stępień R, Abramski K and Buczyńskia R 2015 Opt. Eng. 54 016102
[16] Dombi P, Rácz P, Veisz L and Baum P 2014 Opt. Lett. 39 2232
[17] Mcconnell G and Riis E 2004 Appl. Phys. B 78 557
[18] Heidt A M, Rothhardt J, Hartung A, Bartelt H, Rohwer E G, Limpert J and Tünnermann A 2011 Opt. Express 19 13873
[19] Ganz T, Pervak V, Apolonski A and Baum P 2011 Opt. Lett. 36 1107
[20] Schenkel B, Paschotta R and Keller U 2005 J. Opt. Soc. Am. B 22 687
[21] Agrawal G P 2007 Nonlinear Fiber Optics, 4th edn. (San Diego: Academic Press)
[22] Dudley J M and Taylor J R 2010 Supercontinuum Generation in Optical Fibers (UK: Cambridge University Press)
[1] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[2] Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect
Yongxia Zhang(张永霞), Jinhui Yuan(苑金辉), Yuwei Qu(屈玉玮), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), Xinzhu Sang(桑新柱), Keping Long(隆克平), Chongxiu Yu(余重秀). Chin. Phys. B, 2020, 29(3): 034208.
[3] Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber
Zhen-Kai Fan(范振凯), Shao-Bo Fang(方少波), Shu-Guang Li(李曙光), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094209.
[4] Design and optimization of microstructure optical fiber sensor based on bimetal plasmon mode interaction
Meng Wu(吴萌), Xin-Yu Liu(刘欣宇), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Bo-Yao Li(李波瑶), Zhi-Yun Hou(侯峙云). Chin. Phys. B, 2019, 28(12): 124202.
[5] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
[6] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[7] Study on polarization properties of graphene coated D-shaped fiber
Xuejing Liu(刘学静), Luwen Yang(杨禄文), Jingyun Ma(马敬云), Caili Li(李彩丽), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2018, 27(10): 104206.
[8] Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity
Min Liu(刘敏), Jingyun Hou(侯静云), Xu Yang(杨虚), Bingyue Zhao(赵昺玥), Ping Shum. Chin. Phys. B, 2018, 27(1): 014206.
[9] Supercontinuum generation in seven-core photonic crystal fiber pumped by a broadband picosecond pulsed fiber amplifier
Ning Su(苏宁), Ping-Xue Li(李平雪), Kun Xiao(肖坤), Xiao-Xiao Wang(王晓晓), Jian-Guo Liu(刘建国), Yue Shao(邵月), Meng Su(苏盟). Chin. Phys. B, 2017, 26(7): 074210.
[10] Scaling of Yb-doped photonic crystal fiber to 200 μm core diameter for high beam quality laser output
Kuo Meng(孟阔), Lian-Qing Zhu(祝连庆), Fei Luo(骆飞). Chin. Phys. B, 2017, 26(5): 054212.
[11] Ultra-broadband polarization splitter based on graphene layer-filled dual-core photonic crystal fiber
Hui Zou(邹辉), Hui Xiong(熊慧), Yun-Shan Zhang(张云山), Yong Ma(马勇), Jia-Jin Zheng(郑加金). Chin. Phys. B, 2017, 26(12): 124216.
[12] Photonic crystal fiber polarization filter with two large apertures coated with gold layers
Jun-Jun Wu(吴君君), Shu-Guang Li(李曙光), Qiang Liu(刘强), Min Shi(石敏). Chin. Phys. B, 2017, 26(11): 114209.
[13] Gamma-radiation effects in pure-silica-core photonic crystal fiber
Wei Cai(蔡伟), Ningfang Song(宋凝芳), Jing Jin(金靖), Jingming Song(宋镜明), Wei Li(李伟), Wenyong Luo(罗文勇), Xiaobin Xu(徐小斌). Chin. Phys. B, 2017, 26(11): 114211.
[14] Surface plasmon resonance-induced tunable polarization filters based on nanoscale gold film-coated photonic crystal fibers
Yingchao Liu(刘英超), Hailiang Chen(陈海良), Shuguang Li(李曙光), Qiang Liu(刘强), Jianshe Li(李建设). Chin. Phys. B, 2017, 26(10): 104211.
[15] Effects of dispersion and filtering induced by periodic multilayer mirrors reflection on attosecond pulses
Cheng-You Lin(林承友), Liang Yin(尹亮), Shu-Jing Chen(陈淑静), Zhao-Yang Chen(陈朝阳), Ying-Chun Ding(丁迎春). Chin. Phys. B, 2016, 25(9): 097802.
No Suggested Reading articles found!