Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018212    DOI: 10.1088/1674-1056/25/1/018212
Special Issue: TOPICAL REVIEW — Fundamental physics research in lithium batteries
TOPICAL REVIEW—Fundamental physics research in lithium batteries Prev   Next  

Multi-scale computation methods: Their applications in lithium-ion battery research and development

Siqi Shi(施思齐)1,2, Jian Gao(高健)2, Yue Liu(刘悦)3, Yan Zhao(赵彦)1, Qu Wu(武曲)1, Wangwei Ju(琚王伟)3, Chuying Ouyang(欧阳楚英)4, Ruijuan Xiao(肖睿娟)5
1. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;
2. Materials Genome Institute, Shanghai University, Shanghai 200444, China;
3. School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China;
4. Department of Physics, Jiangxi Normal University, Nanchang 330022, China;
5. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

Based upon advances in theoretical algorithms, modeling and simulations, and computer technologies, the rational design of materials, cells, devices, and packs in the field of lithium-ion batteries is being realized incrementally and will at some point trigger a paradigm revolution by combining calculations and experiments linked by a big shared database, enabling accelerated development of the whole industrial chain. Theory and multi-scale modeling and simulation, as supplements to experimental efforts, can help greatly to close some of the current experimental and technological gaps, as well as predict path-independent properties and help to fundamentally understand path-independent performance in multiple spatial and temporal scales.

Keywords:  multiscale computation      lithium-ion battery      material design  
Received:  05 November 2015      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  47.11.St (Multi-scale methods)  
  46.25.Cc (Theoretical studies)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51372228 and 11234013), the National High Technology Research and Development Program of China (Grant No. 2015AA034201), and Shanghai Pujiang Program, China (Grant No. 14PJ1403900).

Corresponding Authors:  Siqi Shi, Yue Liu, Chuying Ouyang, Ruijuan Xiao     E-mail:  sqshi@shu.edu.cn;yliu@staff.shu.edu.cn;cyouyang@hotmail.com;rjxiao@aphy.iphy.ac.cn

Cite this article: 

Siqi Shi(施思齐), Jian Gao(高健), Yue Liu(刘悦), Yan Zhao(赵彦), Qu Wu(武曲), Wangwei Ju(琚王伟), Chuying Ouyang(欧阳楚英), Ruijuan Xiao(肖睿娟) Multi-scale computation methods: Their applications in lithium-ion battery research and development 2016 Chin. Phys. B 25 018212

[1] Raabe D 1998 Computational Materials Science: the Simulation of Materials Microstructures and Properties (Weinheim: Wiley-VCH)
[2] Ceder G 2010 Mrs Bulletin 35 693
[3] Meng Y and Arroyo-de Dompablo M 2009 Energy & Environmental Science 2 589
[4] Meng Y and Arroyo-de Dompablo M 2013 Accounts Chem. Res. 46 1171
[5] Zhang T, Li D, Tao Z and Chen J 2013 Progress in Natural Science-Materials International 23 256
[6] Ouyang C and Chen L 2013 Science China-Physics Mechanics & Astronomy 56 2278
[7] Islam M and Fisher C 2014 Chem. Soc. Rev. 43 185
[8] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 B864
[9] Kohn W and Sham L 1965 Phys. Rev. 140 1133
[10] Car R and Parrinello M 1985 Phys. Rev. Lett. 55 2471
[11] Uebing C and Gomer R 1994 J. Chem. Phys. 100 7759
[12] Binder K 1997 Rep. Prog. Phys. 60 487
[13] van de Walle A, Asta M and Ceder G 2002 CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 26 539
[14] Sanchez J and de Fontaine D 1981 Structure and Bonding in Crystals 2 117
[15] Sluiter M, Turchi P, Fu Z and de Fontaine D 1988 Phys. Rev. Lett. 60 716
[16] Berera A and de Fontaine D 1989 Phys. Rev. B 39 6727
[17] Ceder G, Asta M, Carter W, Kraitchman M, de Fontaine D, Mann M and Sluiter M 1990 Phys. Rev. B 41 8698
[18] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[19] Milman V, Winkler B, White J, Pickard C, Payne M, Akhmatskaya E and Nobes R 2000 Int. J. Quant. Chem. 77 895
[20] Hammer B, Hansen L and Norskov J 1999 Phys. Rev. B 59 7413
[21] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A, Smogunov A, Umari P and Wentzcovitch R 2009 J. Phys.-Conden. Matt. 21 395502
[22] Vanderbilt D 1990 Phys. Rev. B 41 7892
[23] Vanderbilt D, Taole S and Narasimhan S 1990 Phys. Rev. B 42 11373
[24] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[25] Padhi A, Nanjundaswamy K and Goodenough J 1997 J. Electrochem. Soc. 144 1188
[26] Shi S, Liu L, Ouyang C, Wang D, Wang Z, Chen L and Huang X 2003 Phys. Rev. B 68 195108
[27] Shi S, Ouyang C, Lei M and Tang W 2007 J. Power Sources 171 908
[28] Ouyang C, Zhong Z and Lei M 2007 Electrochem. Commun. 9 1107
[29] Guo B, Fang X, Li B, Shi Y, Ouyang C, Hu Y, Wang Z, Stucky G and Chen L 2012 Chem. Mater. 24 457
[30] Heyd J, Scuseria G and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[31] Paier J, Marsman M, Hummer K, Kresse G, Gerber I and Angyan J 2006 J. Chem. Phys. 124 154709
[32] Paier J, Marsman M, Hummer K, Kresse G, Gerber I and Angyan J 2006 J. Chem. Phys. 125 249901
[33] Heyd J, Scuseria G and Ernzerhof M 2006 J. Chem. Phys. 124 219906
[34] Chevrier V, Ong S, Armiento R, Chan M and Ceder G 2010 Phys. Rev. B 82 075122
[35] Anisimov V, Solovyev I, Korotin M, Czyzyk M and Sawatzky G 1993 Phys. Rev. B 48 16929
[36] Liechtenstein A, Anisimov V and Zaanen J 1995 Phys. Rev. B 52 R5467
[37] Zhou F, Kang K, Maxisch T, Ceder G and Morgan D 2004 Solid State Commun. 132 181
[38] Ouyang C, Shi S and Lei M 2009 J. Alloy. Compound. 474 370
[39] Maxisch T, Zhou F and Ceder G 2006 Phys. Rev. B 73 104301
[40] Henkelman G and Jonsson H 2000 J. Chem. Phys. 113 9978
[41] Ouyang C, Du Y, Shi S and Lei M 2009 Phys. Lett. A 373 2796
[42] Yan H, Wang Z, Xu B and Ouyang C 2012 Function. Mater. Lett. 5 1250037
[43] Shi S, Lu P, Liu Z, Qi Y, Hector L, Li H and Harris S 2012 J. Am. Chem. Soc. 134 15476
[44] Shi S, Qi Y, Li H and Hector L 2013 J. Phys. Chem. C 117 8579
[45] Kutner R 1981 Phys. Lett. A 81 239
[46] Vineyard G 1957 J. Phys. Chem. Solid. 3 121
[47] Ouyang C, Shi S, Wang Z, Huang X and Chen L 2004 Phys. Rev. B 69 104303
[48] Shi S, Xu L, Ouyang C, Wang Z and Chen L 2006 Ionics 12 343
[49] Ouyang C, Shi S, Wang Z, Li H, Huang X and Chen L 2004 J. Phys.: Conden. Matter 16 2265
[50] Darling R and Newman J 1999 J. Electrochem. Soc. 146 3765
[51] Gao Y, Reimers J and Dahn J 1996 Phys. Rev. B 54 3878
[52] Ouyang C, Shi S, Wang Z, Huang X and Chen L 2004 Solid State Commun. 130 501
[53] Ouyang C, Shi S, Wang Z, Li H, Huang X and Chen L 2005 Chin. Phys. Lett. 22 489
[54] Suzuki K, Oumi Y, Takami S, Kubo M, Miyamoto A, Kikuchi M, Yamazaki N and Mita M 2000 Jpn. J. Appl. Phys. 39 4318
[55] Tateishi K, du Boulay D, Ishizawa N and Kawamura K 2003 J. Solid State Chem. 174 175
[56] Ouyang C, Shi S, Wang Z, Li H, Huang X and Chen L 2004 Europhys. Lett. 67 28
[57] Wolverton C and Zunger A 1998 Phys. Rev. B 57 2242
[58] Hautier G, Jain A, Chen H, Moore C, Ong S and Ceder G 2011 J. Mater. Chem. 21 17147
[59] Pan J, Cheng Y and Qi Y 2015 Phys. Rev. B 91 134116
[60] van der Ven A, Aydinol M, Ceder G, Kresse G and Hafner J 1998 Phys. Rev. B 58 2975
[61] van der Ven A, Ceder G, Asta M and Tepesch P 2001 Phys. Rev. B 64 184307
[62] Hinuma Y, Meng Y and Ceder G 2008 Phys. Rev. B 77 224111
[63] Malik R, Zhou F and Ceder G 2009 Phys. Rev. B 79 214201
[64] Ong S, Wang L, Kang B and Ceder G 2008 Chem. Mater. 20 1798
[65] Shi S, Zhang H, Ke X, Ouyang C, Lei M and Chen L 2009 Phys. Lett. A 373 4096
[66] Gong X, Huang J, Chen Y, Wu M, Liu G, Lei X, Liang J, Cao H, Tang F, Xu B and Ouyang C 2013 Int. J. Electrochem. Sci. 8 10549
[67] Gu L, Zhu C, Li H, Yu Y, Li C, Tsukimoto S, Maier J and Ikuhara Y 2011 J. Am. Chem. Soc. 133 4661
[68] Lu X, Jian Z, Fang Z, Gu L, Hu Y, Chen W, Wang Z and Chen L 2011 Energy & Environmental Sci. 4 2638
[69] Lu X, Zhao L, He X, Xiao R, Gu L, Hu Y, Li H, Wang Z, Duan X and Chen L 2012 Adv. Mater. 24 3233
[70] Lu X, Sun Y, Jian Z, He X, Gu L, Hu Y, Li H, Wang Z, Chen W and Duan X 2012 Nano Lett. 12 6192
[71] Wang R, He X, He L, Wang F, Xiao R, Gu L, Li H and Chen L 2013 Adv. Energy Mater. 3 1358
[72] Zhu C, Gu L, Suo L, Popovic J, Li H, Ikuhara Y and Maier J 2014 Adv. Function. Mater. 24 312
[73] Lin M, Ben L, Sun Y, Wang H, Yang Z, Gu L, Yu X, Yang X, Zhao H, Yu R, Armand M and Huang X 2015 Chem. Mater. 27 292
[74] Lyu Y, Zhao N, Hu E, Xiao R, Yu X, Gu L, Yang X and Li H 2015 Chem. Mater. 27 5238
[75] Zhou Y, Ma J, Hu E, Yu X, Gu L, Nam K, Chen L, Wang Z and Yang X 2014 Nat. Commun. 5 5381
[76] Tang D, Sun Y, Yang Z, Ben L, Gu L and Huang X 2014 Chem. Mater. 26 3535
[77] Lu X, Gu L, Hu Y, Chiu H, Li H, Demopoulos G and Chen L 2015 J. Am. Chem. Soc. 137 1581
[78] Sun Y, Zhao L, Pan H, Lu X, Gu L, Hu Y, Li H, Armand M, Ikuhara Y and Chen L 2013 Nat. Commun. 4 1870
[79] Gu L, Xiao D, Hu Y, Li H and Ikuhara Y 2015 Adv. Mater. 27 2134
[80] Wang Y, Yang Z, Qian Y, Gu L and Zhou H 2015 Adv. Mater. 27 3915
[81] Yue J, Zhou Y, Shi S, Shadike Z, Huang X, Luo J, Yang Z, Li H, Gu L and Yang X 2015 Sci. Rep. 5 8810
[82] Poduri R and Chen L 1998 Acta Mater. 46 1719
[83] Kundin J and Siquieri R 2011 Physica D 240 459
[84] Wang Y, Jin Y and Khachaturyan A 2002 J. Appl. Phys. 91 6435
[85] Mamivand M, Zaeem M and El Kadiri H 2014 Acta Mater. 64 208
[86] Wen Y, Lill J, Chen S and Simmons J 2010 Acta Mater. 58 875
[87] Bottger B, Eiken J and Apel M 2009 J. Comput. Phys. 228 6784
[88] Kitashima T and Harada H 2009 Acta Materialia 57 2020
[89] Gibbs J 1873 A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces (New Haven: Connecticut Academy of Arts and Sciences)
[90] Cahn J and Hilliard J 1958 J. Chem. Phys. 28 258
[91] Cahn J 1961 Acta Metallurgica 9 795
[92] Cahn J and Allen S 1977 Le Journal de Physique Colloques 38 51
[93] Khachaturyan A, Semenovskaya S and Tsakalakos T 1995 Phys. Rev. B 52 15909
[94] Bazant M 2013 Acc. Chem. Res. 46 1144
[95] Zhang H, Liu Z, Liang L, Chen L, Qi Y, Harris S, Lu P and Chen L 2014 ECS Trans. 61 1
[96] Cogswell D and Bazant M 2012 Acs Nano 6 2215
[97] Chen L, Fan F, Hong L, Chen J, Ji Y, Zhang S, Zhu T and Chen L 2014 J. Electrochem. Soc. 161 F3164
[98] Chen G, Song X and Richardson T 2006 Electrochem. Solid State Lett. 9 A295
[99] Meethong N, Huang H, Speakman S, Carter W and Chiang Y 2007 Adv. Function. Mater. 17 1115
[100] Singh G, Ceder G and Bazant M 2008 Electrochimica Acta 53 7599
[101] Malik R, Burch D, Bazant M and Ceder G 2010 Nano Lett. 10 4123
[102] Wagemaker M, Mulder F and Van der Ven A 2009 Adv. Mater. 21 2703
[103] Guyer J, Boettinger W, Warren J and McFadden G 2004 Phys. Rev. E 69 021603
[104] Guyer J, Boettinger W, Warren J and McFadden G 2004 Phys. Rev. E 69 021604
[105] Gathright W, Jensen M and Lewis D 2011 ECS Trans. 35 1077
[106] Deng J, Wagner G and Muller R 2013 J. Electrochem. Soc. 160 A487
[107] Cogswell D and Bazant M 2013 Nano Lett. 13 3036
[108] Kilic M, Bazant M and Ajdari A 2007 Phys. Rev. E 75 021502
[109] Bazant M, Kilic M, Storey B and Ajdari A 2009 Adv. Colloid Interf. Sci. 152 48
[110] Han B, van der Ven A, Morgan D and Ceder G 2004 Electrochimica Acta 49 4691
[111] Kuznetsov M and Ulstrup J 1999 Electron Transfer in Chemistry and Biology: an Introduction to the Theory (New Jersey: John Wiley & Sons Ltd)
[112] Sekimoto K 2010 Stochastic Energetics (Berlin: Springer)
[113] Prigogine I, Defay R and Everett D 1954 Chemical Thermodynamics (London: Longmans, Green)
[114] Balluffir W, Allen S and Carter W 2005 Kinetics of Materials (New Jersey: John Wiley & Sons)
[115] De Groots S and Mazur P 2013 Non-equilibrium Thermodynamics (Illinois: Courier Corporation)
[116] Burch D and Bazant M 2009 Nano Lett. 9 3795
[117] Bai P, Cogswell D and Bazant M 2011 Nano Lett. 11 4890
[118] Byoungwoo K and Ceder G 2009 Nature 458 190
[119] Wu X, Jiang L, Cao F, Guo Y and Wan L 2009 Adv. Mater. 21 2710
[120] Laffont L, Delacourt C, Gibot P, Wu M, Kooyman P, Masquelier C and Tarascon J 2006 Chem. Mater. 18 5520
[121] Singh G, Bazant M and Ceder G 2007 arXiv: 0707.1858
[122] Kilic M, Bazant M and Ajdari A 2007 Phys. Rev. E 75 021503
[123] Bazant M 2011 Electrochem. Energy Systems, in MIT Open Course Ware
[124] Dreyer W, Jamnik J, Guhlke C, Huth R, Moškon J and Gaberšček M 2010 Nat. Mater. 9 448
[125] Tang M, Huang H, Meethong N, Kao Y, Carter W and Chiang Y 2009 Chem. Mater. 21 1557
[126] Tang M, Carter W and Chiang Y 2010 Annual Rev. Mater. Res. 40 501
[127] Ouvrard G, Zerrouki M, Soudan P, Lestriez B, Masquelier C, Morcrette M, Hamelet S, Belin S, Flank A and Baudelet F 2013 J. Power Sources 229 16
[128] Stanton L and Bazant M 2012 arXiv:1202.1626[cond-mat.mtrl-sci]
[129] Ferguson T and Bazant M 2012 J. Electrochem. Soc. 159 A1967
[130] Ramana C, Mauger A, Gendron F, Julien C and Zaghib K 2009 J. Power Sources 187 555
[131] Beaulieu L, Eberman K, Turner R, Krause L and Dahn J 2001 Electrochem. Solid-State Lett. 4 A137
[132] Christensen J and Newman J 2006 J. Solid State Electrochem. 10 293
[133] Zhang X, Shyy W and Sastry A 2007 J. Electrochem. Soc. 154 A910
[134] Cheng Y and Verbrugge M 2008 J. Appl. Phys. 104 083521
[135] Purkayastha R and McMeeking R 2012 J. Appl. Mechan. 79 031021
[136] Gurtin M 1996 Physica D 92 178
[137] van der Ven A, Garikipati K, Kim S and Wagemaker M 2009 J. Electrochem. Soc. 156 A949
[138] Huttin M and Kamlah M 2012 Appl. Phys. Lett. 101 133902
[139] Anand L 2012 J. Mechan. Phys. Solid. 60 1983
[140] Di Leo C, Rejovitzky E and Anand L 2014 J. Mechan. Phys. Solid. 70 1
[141] Aranson I, Kalatsky V and Vinokur V 2000 Phys. Rev. Lett. 85 118
[142] Karma A, Kessler D and Levine H 2001 Phys. Rev. Lett. 87 045501
[143] Hakim V and Karma A 2009 J. Mechan. Phys. Solid. 57 342
[144] Miehe C, Welschinger F and Hofacker M 2010 J. Mechan. Phys. Solid. 58 1716
[145] Zuo P and Zhao Y 2015 Phys. Chem. Chem. Phys. 17 287
[146] Boovaragavan V, Ramadesigan V, Panchagnula M and Subramanian V 2010 J. Electrochem. Soc. 157 A98
[147] Nadler S 1992 Continuum Theory: an Introduction (Florida: CRC Press)
[148] Böhme T, Drautz R, Hammerschmidt T and Pretorius T 2011 Closing the Gap Between Nano- and Macroscale: Atomic Interactions vs. Macroscopic Materials Behavior (Rijeka: INTECH Open Access Publisher)
[149] Wang X 2003 Finite Element Method (Peiking: Tsinghua University Press)
[150] Zhang Y, Gu J, Shang J and Ma Y 2007 Fundamental of Computational Materials Science (Peiking: Beihang University Press)
[151] Morton K and Mayers D 2005 Numerical Solution of Partial Differential Equations: an Introduction (Cambridge: Cambridge University Press)
[152] Leveque R 2007 Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Philadelphia: SIAM)
[153] Doyle M, Fuller T and Newman J 1993 J. Electrochem. Soc. 140 1526
[154] Botte G, Subramania V and White R 2000 Electrochim. Acta 45 2595
[155] Subramanian V R, Diwakar V D and Tapriyal D 2005 J. Electrochem. Soc. 152 A2002
[156] Arora P, White R E and Doyle M 1998 J. Electrochem. Soc. 145 3647
[157] Zhao K, Wang W, Gregoire J, Pharr M, Suo Z, Vlassak J and Kaxiras E 2011 Nano Lett. 11 2962
[158] Stournara M, Qi Y and Shenoy V 2014 Nano Lett. 14 2140
[159] Bower A, Guduru P and Sethuraman V 2011 J. Mech. Phys. Solid. 59 804
[160] Sethuraman V, Srinivasan V, Bower A and Guduru P 2010 J. Electrochem. Soc. 157 A1253
[161] Bower A and Guduru P 2012 Model. Simulat. Mater. Sci. Engin. 20 045004
[162] An Y and Jiang H 2013 Model. Simulat. Mater. Sci. Engin. 21 074007
[163] Seo J, Chung M, Park M, Han S, Zhang X and Sastry A 2011 J. Electrochem. Soc. 158 A434
[164] Spotnitz R, Weaver J, Yeduvaka G, Doughty D and Roth E 2007 J. Power Sources 163 1080
[165] Wang Q, Ping P, Zhao X, Chu G, Sun J and Chen C 2012 J. Power Sources 208 210
[166] Kim G, Pesaran A and Spotnitz R 2007 J. Power Sources 170 476
[167] Jeon D and Baek S 2011 Energy Conversion and Management 52 2973
[168] Bandhauer T, Garimella S and Fuller T 2011 J. Electrochem. Soc. 158 R1
[169] Guo G, Long B, Cheng B, Zhou S, Xu P and Cao B 2010 J. Power Sources 195 2393
[170] Chen Y and Evans J 1996 J. Electrochem. Soc. 143 2708
[171] De Levie R 1967 Electrochemical Response of Porous and Rough Electrodes. In: Advances in Electrochemistry and Electrochemical Engineering, vol. 6 (New York: Wiley Interscience) pp. 329--97
[172] Dao T, Vyasarayani C and McPhee J 2012 J. Power Sources 198 329
[173] Patel K, Paulsen J and Desilvestro J 2003 J. Power Sources 122 144
[174] Chen Y, Wang C, Zhang X and Sastry A 2010 J. Power Sources 195 2851
[175] Sikha G, Popov B and White R 2004 J. Electrochem. Soc. 151 A1104
[176] West K, Jacobsen T and Atlung S 1982 J. Electrochem. Soc. 129 1480
[177] Murphy K 2012 Machine Learning: a Probabilistic Perspective (Massachusetts: MIT Press)
[178] Salkind A, Fennie C, Singh P, Atwater T and Reisner D 1999 J. Power Sources 80 293
[179] Waag W, Fleischer C and Sauer D 2014 J. Power Sources 258 321
[180] Cai C, Du D and Liu Z 2003 12th IEEE International Conference on Fuzzy Systems, ST Louis, MO
[181] Li G, Wang H and Yu Z 2009 WRI World Congress on Software Engineering, Xiamen, China
[182] Lee D, Shiah S, Lee C and Wang Y 2007 Vehicular Technology, IEEE Transactions on 56 544
[183] Chen Z, Qiu S, Masrur M and Murphey Y 2011 International Joint Conference on Neural Networks, San Jose, CA
[184] Chang W 2013 Int. J. Electrical Power & Energy Systems 53 603
[185] Hansen T and Wang C 2005 J. Power Sources 141 351
[186] Alvarez Anton J, Garcia Nieto P, Blanco Viejo C and Vilan Vilan J 2013 IEEE Transactions on Power Electronics 28 5919
[187] Zhang N and Liu K 2011 Mechanic Automation and Control Engineering (MACE), 2011 Second International Conference on IEEE Inner Mongolia
[188] Shi Q, Zhang C and Cui N 2008 Int. J. Automotive Tech. 9 759
[189] Hu X, Sun F, Zou Y and Peng H 2011 Proceedings of the American Control Conference, Jun. 29--Jul. 1, 2011, San Fransisco, CA, pp. 935--940
[190] Fleischer C, Waag W, Bai Z and Sauer D 2013 J. Power Electron. 13 516
[191] Klass V, Behm M and Lindbergh G 2014 J. Power Sources 270 262
[192] Eddahech A, Briat O, Bertrand N, Delétage J and Vinassa J 2012 International Journal of Electrical Power & Energy Systems 42 487
[193] Zenati A, Desprez P and Razik H 2010 IECON 2010-36$th Annual Conference of IEEE Industrial Electronics Glendale, AZ, USA
[194] Charkhgard M and Farrokhi M 2010 Industrial Electronics, IEEE Transactions on 57 4178
[195] Fujimura K, Seko A, Koyama Y, Kuwabara A, Kishida I, Shitara K, Fisher C, Moriwake H and Tanaka I 2013 Adv. Energy Mater. 3 980
[196] Farrusseng D, Clerc F, Mirodatos C and Rakotomalala R 2009 Comput. Mater. Sci. 45 52
[197] Hautier G, Fischer C, Jain A, Mueller T and Ceder G 2010 Chem. Mater. 22 3762
[198] Meredig B, Agrawal A, Kirklin S, Saal J, Doak J, Thompson A, Zhang A, Choudhary A and Wolverton C 2014 Phys. Rev. B 89 094104
[199] Hautier G, Fischer C, Ehrlacher V, Jain A and Ceder G 2010 Inorganic Chemistry 50 656
[200] Xiao R, Li H and Chen L 2015 J. Materiomics
[201] Gao J, Chu G, He M, Zhang S, Xiao R, Li H and Chen L 2014 China Phys. Mech. Astron. 57 1526
[202] Cheng L, Assary R, Qu X, Jain A, Ong S, Rajput N, Persson K and Curtiss L 2015 J. Phys. Chem. Lett. 6 283
[1] Probing the improved stability for high nickel cathode via dual-element modification in lithium-ion
Fengling Chen(陈峰岭), Chaozhi Zeng(曾朝智), Chun Huang(黄淳), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(7): 078101.
[2] Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials
Fengling Chen(陈峰岭), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Jing Xie (解婧),Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(5): 058101.
[3] Efficient sampling for decision making in materials discovery
Yuan Tian(田原), Turab Lookman, and Dezhen Xue(薛德祯). Chin. Phys. B, 2021, 30(5): 050705.
[4] Review on electrode-level fracture in lithium-ion batteries
Bo Lu(吕浡), Chengqiang Ning(宁成强), Dingxin Shi(史定鑫), Yanfei Zhao(赵炎翡), Junqian Zhang(张俊乾). Chin. Phys. B, 2020, 29(2): 026201.
[5] Influence of carbon coating on the electrochemical performance of SiO@C/graphite composite anode materials
Hao Lu(陆浩), Junyang Wang(汪君洋), Bonan Liu(刘柏男), Geng Chu(褚赓), Ge Zhou(周格), Fei Luo(罗飞), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(6): 068201.
[6] Parameter identification and state-of-charge estimation approach for enhanced lithium-ion battery equivalent circuit model considering influence of ambient temperatures
Hui Pang(庞辉), Lian-Jing Mou(牟联晶), Long Guo(郭龙). Chin. Phys. B, 2019, 28(10): 108201.
[7] Discovery and design of lithium battery materials via high-throughput modeling
Xuelong Wang(王雪龙), Ruijuan Xiao(肖睿娟), Hong Li(李泓), Liquan Chen(陈立泉). Chin. Phys. B, 2018, 27(12): 128801.
[8] Redox-assisted Li+-storage in lithium-ion batteries
Qizhao Huang(黄启昭) and Qing Wang(王庆). Chin. Phys. B, 2016, 25(1): 018213.
[9] Analysis on the capacity degradation mechanism of a series lithium-ion power battery pack based on inconsistency of capacity
Wang Zhen-Po (王震坡), Liu Peng (刘鹏), Wang Li-Fang (王丽芳). Chin. Phys. B, 2013, 22(8): 088801.
[10] Cation mixing (Li0.5Fe0.5)2SO4F cathode material for lithium-ion batteries
Sun Yang(孙洋), Liu Lei(刘磊), Dong Jin-Ping(董金平), Zhang Bin(张斌), and Huang Xue-Jie(黄学杰). Chin. Phys. B, 2011, 20(12): 126101.
[11] A simple theoretical model for evaluating the ability to form a single crystal
Jin Yun-Fei(金云飞), Ming Chen(明辰), Ye Xiang-Xi(叶祥熙), Wang Wei-Min(王为民), and Ning Xi-Jing(宁西京). Chin. Phys. B, 2010, 19(7): 076105.
[12] Electrochemical properties of SnO2 nanorods as anode materials in lithium-ion battery
Shi Song-Lin(施松林), Liu Yong-Gang(刘永刚), Zhang Jing-Yuan(张敬源), and Wang Tai-Hong(王太宏). Chin. Phys. B, 2009, 18(10): 4564-4570.
No Suggested Reading articles found!