Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 077803    DOI: 10.1088/1674-1056/24/7/077803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Real-time quantitative optical method to study temperature dependence of crack propagation process in colloidal photonic crystal film

Lin Dong-Feng (林冬风)a b, Xu Yu-Zhuan (徐余颛)a b, Shi Jiang-Jian (石将建)a b, Zhang Yu (张瑜)a b, Luo Yan-Hong (罗艳红)a b, Li Dong-Mei (李冬梅)a b, Meng Qing-Bo (孟庆波)a b
a Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing 100190, China;
b Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

A real-time quantitative optical method to characterize crack propagation in colloidal photonic crystal film (CPCF) is developed based on particle deformation models and previous real-time crack observations. The crack propagation process and temperature dependence of the crack propagation rate in CPCF are investigated. By this method, the crack propagation rate is found to slow down gradually to zero when cracks become more numerous and dense. Meanwhile, with the temperature increasing, the crack propagation rate constant decreases. The negative temperature dependence of the crack propagation rate is due to the increase of van der Waals attraction, which finally results in the decrease of resultant force. The findings provide new insight into the crack propagation process in CPCF.

Keywords:  colloidal photonic crystal      crack propagation      temperature      real-time quantitative optical method  
Received:  25 March 2015      Revised:  16 April 2015      Accepted manuscript online: 
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  62.20.mt (Cracks)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2012CB932903 and 2012CB932904) and the National Natural Science Foundation of China (Grant Nos. 51372270, 11474333, and 21173260).

Corresponding Authors:  Li Dong-Mei, Meng Qing-Bo     E-mail:  dmli@iphy.ac.cn;qbmeng@iphy.ac.cn

Cite this article: 

Lin Dong-Feng (林冬风), Xu Yu-Zhuan (徐余颛), Shi Jiang-Jian (石将建), Zhang Yu (张瑜), Luo Yan-Hong (罗艳红), Li Dong-Mei (李冬梅), Meng Qing-Bo (孟庆波) Real-time quantitative optical method to study temperature dependence of crack propagation process in colloidal photonic crystal film 2015 Chin. Phys. B 24 077803

[1] Routh A F 2013 Rep. Prog. Phys. 76 046603
[2] Huang Y, Zhou J, Su B, Shi L, Wang J, Chen S, Wang L, Zi J, Song Y and Jiang L 2012 J. Am. Chem. Soc. 134 17053
[3] Cao H, Lan D, Wang Y, Volinsky A A, Duan L and Jiang H 2010 Phys. Rev. E 82 031602
[4] Hartsuiker A and Vos W L 2008 Langmuir 24 4670
[5] Singh K B and Tirumkudulu M S 2007 Phys. Rev. Lett. 98 218302
[6] Lee W P and Routh A F 2006 Ind. Eng. Chem. Res. 45 6996
[7] Tirumkudulu M S and Russel W B 2005 Langmuir 21 4938
[8] Teh L K, Tan N K, Wong C C and Li S 2005 Appl. Phys. A 81 1399
[9] Wong S, Kitaev V and Ozin G A 2003 J. Am. Chem. Soc. 125 15589
[10] Velikov K P, van Dillen T, Polman A and van Blaaderen A 2002 Appl. Phys. Lett. 81 838
[11] Shorlin K A, de Bruyn J R, Graham M and Morris S W 2000 Phys. Rev. E 61 6950
[12] Hodges C S, Ding Y and Biggs S 2010 J. Colloid Interface Sci. 352 99
[13] Tarafdar S and Sinha S 2008 Ind. Eng. Chem. Res. 47 6459
[14] Ball P 2004 Nat. Mater. 3 851
[15] Bucklow S 1999 Stud. Conserv. 44 233
[16] Bucklow S 1997 Stud. Conserv. 42 129
[17] Routh A F and Russel W B 1999 Langmuir 15 7762
[18] Lin D, Wang J, Yang L, Luo Y, Li D and Meng Q 2014 Langmuir 30 3949
[19] Wang J, Yang L, Lin D, Luo Y, Li D and Meng Q 2012 J. Chem. Phys. 137 234111
[20] Yang L, Gao K, Luo Y, Luo J, Li D and Meng Q 2010 Langmuir 27 1700
[21] Li J, Xue L, Wang Z and Han Y 2007 Colloid. Polym. Sci. 285 1037
[22] Gates B, Park S H and Xia Y 2000 Adv. Mater. 12 653
[23] Mazur S, Beckerbauer R and Buckholz J 1997 Langmuir 13 4287
[24] López C, Vázquez L, Meseguer F, Mayoral R, Ocaña M and Miguez H 1997 Superlattices Microstruct. 22 399
[25] Lifshitz E M 1956 Soviet Phys. 2 73
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[4] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[5] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[6] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[7] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[8] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[9] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[10] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[11] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[12] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[13] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[14] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[15] A radiation-temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber
Yong Li(李勇), Haoshi Zhang(张浩石), Xiaowei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(7): 074211.
No Suggested Reading articles found!