Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 077104    DOI: 10.1088/1674-1056/24/7/077104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic and optical properties of lithium niobate under high pressure: A first-principles study

Sang Dan-Dana, Wang Qing-Linb, Han Chonga, Chen Kaia, Pan Yue-Wua
a Mathematics and Physical Sciences Technology, Xuzhou Institute of Technology, Xuzhou 221008, China;
b Center for High Pressure Science and Technology Advanced Research, Changchun 130012, China
Abstract  We theoretically study the structural, electronic, and optical properties of lithium niobate under pressure using the plane-wave pseudopotential density functional theory by CASTEP code. It was found that there is a phase transition from the R3c structure to the Pnma structure at a pressure of 18.7 GPa. The Pnma structure was dynamically stable according to the calculation of phonon dispersion. From the charge density distributions, there exist covalent interactions along the Nb–O bond. The hybridization between O 2p and Nb 4d orbital in the Pnma phase increases with increasing pressure, while it is not changed in the R3c phase. With increasing pressure, the average Nb–O bond length decreases and the Nb–O bond population increases, indicating the increased covalent character between Nb and O atoms under high pressure at Pnma phase, which leads to the increased hybridization between O 2p and Nb 4d orbitals. Furthermore, the optical dielectric function, refractive index, extinction coefficient, electron energy, loss and reflectivity are calculated.
Keywords:  pressure      electronic structure      optical properties      hybridization  
Received:  11 November 2014      Revised:  06 February 2015      Published:  05 July 2015
PACS:  71.20.Ps (Other inorganic compounds)  
  74.25.Gz (Optical properties)  
Fund: Projects supported by the National Natural Science Foundation of China (Grant Nos. 11347154 and 51172194) and the Foundation of Xuzhou Institute of Technology, China (Grant No. XKY2013203).
Corresponding Authors:  Wang Qing-Lin, Han Chong     E-mail:  wangql@hpstar.ac.cn;hanchongxz@163.com

Cite this article: 

Sang Dan-Dan, Wang Qing-Lin, Han Chong, Chen Kai, Pan Yue-Wu Electronic and optical properties of lithium niobate under high pressure: A first-principles study 2015 Chin. Phys. B 24 077104

[1] Veithen M and Ghosez P 2002 Phys. Rev. B 65 214302
[2] Xue D and He X 2006 Phys. Rev. B 73 064113
[3] Choubey R K, Sen P, Sen P K, Bhatt R, Kar S, Shukla V and Bartwal K S 2006 Opt. Mater. 28 467
[4] Beyer O, Breunig I, Kalkum F and Buse K 2006 Appl. Phys. Lett. 88 51120
[5] Abrahams S C and Bernstein J L 1967 J. Phys. Chem. Solids 28 1685
[6] Da Jornada J, Block S, Mauer F and Piermarini G 1985 J. Appl. Phys. 57 842
[7] Lin Y, Li Y, Xu Y, Lan G and Wang H 1995 J. Appl. Phys. 77 3584
[8] Mukaide T, Yagi T, Miyajima N, Kondo T, Sata N and Kikegawa T 2003 J. Appl. Phys. 93 3852
[9] Suchocki A, Paszkowicz W, Kamińka A, Durygin A, Saxena S K, Arizmendi L and Bermudez V 2006 Appl. Phys. Lett. 89 261908
[10] Nakamura K, Higuchi S and Ohnuma T 2012 J. Appl. Phys. 111 033522
[11] Li Z, An X, Cheng X, Wang X, Zhang H, Peng L and Wu W 2014 Chin. Phys. B 23 037104
[12] Feng L, Wang Z, Liu Q, Tan T and Liu Z 2012 Chin. Phys. Lett. 29 127103
[13] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[14] Vanderbilt D 1990 Phys. Rev. B 41 7892
[15] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[16] Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
[17] Francis G and Payne M 1990 J. Phys.: Condens. Matter 2 4395
[18] Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M and Prakapenka V 2009 Nature 458 182
[19] Hao A, Yang X, Wang X, Zhu Y, Liu X and Liu R 2010 J. Appl. Phys. 108 063531
[20] King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651
[21] Sharma S, Verma A S and Jindal V K 2014 Physica B: Condens. Matter 438 97
[22] Yan T 2011 Growth, Structure and Properties of High Quality LiNbO3 and LiTaO3 Crystals (Shandong University) (in Chinese)
[23] Bouhemadou A and Khenata R 2007 Comput. Mater. Sci. 39 803
[1] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[2] Effect of pressure on the electrical properties of flexible NiPc thin films fabricated by rubbing-in technology
Khasan S Karimov, Fahmi F Muhammadsharif, Zubair Ahmad, M Muqeet Rehman, and Rashid Ali. Chin. Phys. B, 2021, 30(1): 014703.
[3] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[4] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[5] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[6] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[7] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[8] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[9] Computation and analysis of light emission in two-bubble sonoluminescence
Jin-Fu Liang(梁金福), Xue-You Wu(吴学由), Yu An(安宇), Wei-Zhong Chen(陈伟中), Jun Wang(王军). Chin. Phys. B, 2020, 29(9): 097801.
[10] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[11] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[12] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[13] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[14] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[15] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
No Suggested Reading articles found!