Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 074702    DOI: 10.1088/1674-1056/24/7/074702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nano watermill driven by revolving charge

Zhou Xiao-Yana b, Kou Jian-Longb, Nie Xue-Chuanc, Wu Feng-Mina b, Liu Yangd, Lu Hang-Junb
a Department of Physics and Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China;
b Department of Physics, Zhejiang Normal University, Jinhua 321004, China;
c Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
d Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
Abstract  

A novel nanoscale watermill for the unidirectional transport of water molecules through a curved single-walled carbon nanotube (SWNT) is proposed and explored by molecular dynamics simulations. In this nanoscale system, a revolving charge is introduced to drive a water chain confined inside the SWNT, the charge and the tube together serving as a nano waterwheel and nano engine. A resonance-like phenomenon is found, and the revolving frequency of the charge plays a key role in pumping the water chain. The water flux across the SWNT increases with respect to the revolving frequency of the external charge and it reaches its maximum when the frequency is 4 THz. Correspondingly, the number of hydrogen bonds in the water chain inside the SWNT decreases dramatically as the frequency increases from 4 THz to 25 THz. The mechanism behind the resonance phenomenon has been investigated systematically. Our findings are helpful for the design of nanoscale fluidic devices and energy converters.

Keywords:  water pumping      molecular dynamics simulations      carbon nanotube      revolving charge  
Received:  19 November 2014      Revised:  13 February 2015      Published:  05 July 2015
PACS:  47.60.-i (Flow phenomena in quasi-one-dimensional systems)  
  47.11.Mn (Molecular dynamics methods)  
  83.10.Mj (Molecular dynamics, Brownian dynamics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11005093 and 61274099), the Research Fund of Education Department of Zhejiang Province, China (Grant No. Y201223336), the Zhejiang Provincial Science and Technology Key Innovation Team, China (Grant No. 2011R50012), the Key Laboratory of Zhejiang Province, China (Grant No. 2013E10022), and the Hong Kong Polytechnic University, China (Grant No. G-YL41).

Corresponding Authors:  Wu Feng-Min, Liu Yang, Lu Hang-Jun     E-mail:  wfm@zjnu.cn;yang.liu@polyu.edu.hk;zjlhjun@zjnu.cn

Cite this article: 

Zhou Xiao-Yan, Kou Jian-Long, Nie Xue-Chuan, Wu Feng-Min, Liu Yang, Lu Hang-Jun Nano watermill driven by revolving charge 2015 Chin. Phys. B 24 074702

[1] Zhao Y, Song L, Deng K, Liu Z, Zhang Z, Yang Y, Wang C, Yang H, Jin A, Luo Q, Gu C, Xie S and Sun L 2008 Adv. Mater. 20 1772
[2] Darhuber A A and Troian S M 2005 Annu. Rev. Fluid Mech. 37 425
[3] Insepov Z, Wolf D and Hassanein A 2006 Nano Lett. 6 1893
[4] Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A and Bakajin O 2006 Science 312 1034
[5] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J and Mayes A M 2008 Nature 452 301
[6] Yuan Q and Zhao Y P 2009 J. Am. Chem. Soc. 131 6374
[7] Tyree M T 2003 Nature 423 923
[8] Tornroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R and Kjellbom P 2006 Nature 439 688
[9] Tajkhorshid E, Nollert P, Jensen M O, Miercke L J W, O'Connell J, Stroud R M and Schulten K 2002 Science 296 525
[10] Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann J B, Engel A and Fujiyoshi Y 2000 Nature 407 599
[11] Su J and Guo H 2012 J. Phys. Chem. B 116 5925
[12] Ku D N 1997 Annu. Rev. Fluid. Mech. 29 399
[13] He J X, Lu H J, Liu Y, Wu F M, Nie X C, Zhou X Y and Chen Y Y 2012 Chin. Phys. B 21 054703
[14] Zhou X Y and Lu H J 2007 Chin. Phys. 16 335
[15] Wang X Y, Cheng C, Wang S L and Liu S R 2009 Microfluid. Nanofluid. 6 145
[16] Liu Z, Zhao Y C and Sun L F 2010 Physics 4 251 (in Chinese)
[17] Fang H P and Tu Y S 2010 Physics 2 002 (in Chinese)
[18] Joseph S and Aluru N R 2008 Phys. Rev. Lett. 101 064502
[19] Rinne K F, Gekle S, Bonthuis D J and Netz R R 2012 Nano Lett. 12 1780
[20] Wang Y, Zhao Y J and Huang J P 2011 J. Phys. Chem. B 115 13275
[21] Qiu H, Shen R and Guo W 2011 Nano Res. 4 284
[22] Gong X J, Li J Y, Lu H J, Wan R Z, Li J C, Hu J and Fang H P 2007 Nat. Nanotechol. 2 709
[23] Duan W H and Wang Q 2010 ACS Nano 4 2338
[24] Zhang Z Q, Dong X, Ye H F, Cheng G G, Ding J N and Ling Z Y 2014 J. Appl. Phys. 116 074307
[25] Feng J W, Ding H M, Ren C L and Ma Y Q 2014 Nanoscale 6 13606
[26] De Luca S, Todd B D, Hansen J S and Daivis P J 2014 Langmuir 30 3095
[27] Zhou X, Wu F, Kou J, Nie X, Liu Y and Lu H 2013 J. Phys. Chem. B 117 11681
[28] Li X P, Kong G P, Zhang X and He G W 2013 Appl. Phys. Lett. 103 143117
[29] De Luca S, Todd B, Hansen J and Daivis P J 2013 J. Chem. Phys. 138 154712
[30] Hummer G, Rasaiah J C and Noworyta J P 2001 Nature 414 188
[31] Joseph S and Aluru N R 2008 Nano Lett. 8 452
[32] Noy A, Park H G, Fornasiero F, Holt J K, Grigoropoulos C P and Bakajin O 2007 Nano Today 2 22
[33] Kràl P and Tomànek D 1999 Phys. Rev. Lett. 82 5373
[34] Svensson K, Olin H and Olsson E 2004 Phys. Rev. Lett. 93 145901
[35] Wang B and Kràl P 2007 Phys. Rev. Lett. 98 266102
[36] Lohrasebi A and Feshanjerdi M 2012 J. Mol. Model. 18 4191
[37] Chang T 2008 Phys. Rev. Lett. 101 175501
[38] Longhurst M and Quirke N 2007 Nano Lett. 7 3324
[39] Kou J, Zhou X, Lu H, Xu Y, Wu F and Fan J 2012 Soft Matter 8 12111
[40] Kou J, Mei M, Lu H, Wu F and Fan J 2012 Phys. Rev. E 85 056301
[41] Vaitheeswaran S, Rasaiah J C and Hummer G 2004 J. Chem. Phys. 121 7955
[42] Dzubiella J and Hansen J P 2005 J. Chem. Phys. 122 234706
[43] Su J and Guo H 2011 ACS Nano 5 351
[44] Kràl P and Shapiro M 2001 Phys. Rev. Lett. 86 131
[45] Ghosh S, Sood A K and Kumar N 2003 Science 299 1042
[46] Lu H, Nie X, Wu F, Zhou X and Kou J 2012 J. Chem. Phys. 136 174511
[47] Seldenthuis J S, Prins F, Thijssen J M and van der Zant H S J 2010 ACS Nano 4 6681
[48] Tierney H L, Murphy C J, Jewell A D, Baber A E, Iski E V, Khodaverdian H Y, McGuire A F, Klebanov N and Sykes E C H 2011 Nat Nano 6 625
[49] Gao L, Liu Q, Zhang Y, Jiang N, Zhang H, Cheng Z, Qiu W, Du S, Liu Y and Hofer W 2008 Phys. Rev. Lett. 101 197209
[50] Maleki T, Mohammadi S and Ziaie B 2009 Nanotechnology 20 105302
[51] Park S, Vosguerichian M and Bao Z 2013 Nanoscale 5 1727
[52] Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
[53] Lindahl E, Hess B and van der Spoel D 2001 J. Mol. Model. 7 306
[54] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
[55] Zeidel M, Ambudkar S, Smith B and Agre P 1992 Biochemistry 31 7436
[56] Zhang Q L, Jiang W Z, Liu J, Miao R D and Sheng N 2013 Phys. Rev. Lett. 110 254501
[57] Lu H J, Gong X J, Wang C L, Fang H P and Wang R Z 2008 Chin. Phys. Lett. 25 1145
[58] Li X Z, Walker B and Michaelides A 2011 Proc. Natl. Acad. Sci. USA 108 6369
[59] Pagliai M, Cardini G, Righini R and Schettino V 2003 J. Chem. Phys. 119 6655
[1] Carbon nanotube-based nanoelectromechanical resonatoras mass biosensor
Ahmed M. Elseddawy, Adel H. Phillips, Ahmed S Bayoumi. Chin. Phys. B, 2020, 29(7): 078501.
[2] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), Guanghong Wei(韦广红). Chin. Phys. B, 2020, 29(10): 108710.
[3] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[4] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[5] Full filling of mesoporous carbon nanotubes by aqueous solution at room temperature
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2019, 28(3): 036801.
[6] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[7] Potentials of classical force fields for interactions between Na+ and carbon nanotubes
De-Yuan Li(李德远), Guo-Sheng Shi(石国升), Feng Hong(洪峰), Hai-Ping Fang(方海平). Chin. Phys. B, 2018, 27(9): 098801.
[8] Observation of 550 MHz passively harmonic mode-locked pulses at L-band in an Er-doped fiber laser using carbon nanotubes film
Qianqian Huang(黄千千), Chuanhang Zou(邹传杭), Tianxing Wang(王天行), Mohammed Al Araimi, Aleksey Rozhin, Chengbo Mou(牟成博). Chin. Phys. B, 2018, 27(9): 094210.
[9] Dependence of the solar cell performance on nanocarbon/Si heterojunctions
Shiqi Xiao(肖仕奇), Qingxia Fan(范庆霞), Xiaogang Xia(夏晓刚), Zhuojian Xiao(肖卓建), Huiliang Chen(陈辉亮), Wei Xi(席薇), Penghui Chen(陈鹏辉), Junjie Li(李俊杰), Yanchun Wang(王艳春), Huaping Liu(刘华平), Weiya Zhou(周维亚). Chin. Phys. B, 2018, 27(7): 078801.
[10] Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures
Haifei Zhan(占海飞), Yuantong Gu(顾元通). Chin. Phys. B, 2018, 27(3): 038103.
[11] Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes
Kui-Kui Zhou(周魁葵), Ning Xu(徐 宁), Guo-Feng Xie(谢国锋). Chin. Phys. B, 2018, 27(2): 026501.
[12] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[13] Numerical simulations of dense granular flow in a two-dimensional channel:The role of exit position
Tingwei Wang(王廷伟), Xin Li(李鑫), Qianqian Wu(武倩倩), Tengfei Jiao(矫滕菲), Xingyi Liu(刘行易), Min Sun(孙敏), Fenglan Hu(胡凤兰), Decai Huang(黄德财). Chin. Phys. B, 2018, 27(12): 124704.
[14] Large magnetic moment at sheared ends of single-walled carbon nanotubes
Jian Zhang(张健), Ya Deng(邓娅), Ting-Ting Hao(郝婷婷), Xiao Hu(胡潇), Ya-Yun Liu(刘雅芸), Zhi-Sheng Peng(彭志盛), Jean Pierre Nshimiyimana, Xian-Nian Chi(池宪念), Pei Wu(武佩), Si-Yu Liu(刘思雨), Zhong Zhang(张忠), Jun-Jie Li(李俊杰), Gong-Tang Wang(王公堂), Wei-Guo Chu(褚卫国), Chang-Zhi Gu(顾长志), Lian-Feng Sun(孙连峰). Chin. Phys. B, 2018, 27(12): 128101.
[15] Ethylene glycol solution-induced DNA conformational transitions
Nan Zhang(张楠), Ming-Ru Li(李明儒), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(11): 113102.
No Suggested Reading articles found!