Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 066801    DOI: 10.1088/1674-1056/24/6/066801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Linear and nonlinear optical properties of Sb-doped GeSe2 thin films

Zhang Zhen-Ying (张振营)a, Chen Fen (陈芬)a, Lu Shun-Bin (陆顺斌)b, Wang Yong-Hui (王永辉)a, Shen Xiang (沈祥)c, Dai Shi-Xun (戴世勋)c, Nie Qiu-Hua (聂秋华)c
a College of Information Science and Engineering, Ningbo University, Ningbo 315211, China;
b Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, College of Physics andMicroelectronic Science, Hunan University, Changsha 410082, China;
c Laboratory of Infrared Materials and Devices, Advanced Technology Research Institute, Ningbo University, Ningbo 315211, China
Abstract  Sb-doped GeSe2 chalcogenide thin films are prepared by the magnetron co-sputtering method. The linear optical properties of as-deposited films are derived by analyzing transmission spectra. The refractive index rises and the optical band gap decreases from 2.08 eV to 1.41 eV with increasing the Sb content. X-ray photoelectron spectra further confirm the formation of a covalent Sb–Se bond. The third-order nonlinear optical properties of thin films are investigated under femtosecond laser excitation at 800 nm. The results show that the third-order nonlinear optical properties are enhanced with increasing the concentration of Sb. The nonlinear refraction indices of these thin films are measured to be on the order of 10-18 m2/W with a positive sign and the nonlinear absorption coefficients are obtained to be on the order of 10-10 m/W. These excellent properties indicate that Sb-doped Ge–Se films have a good prospect in the applications of nonlinear optical devices.
Keywords:  chalcogenides films      refractive index      optical band gap      nonlinear optical properties  
Received:  17 October 2014      Revised:  04 December 2014      Accepted manuscript online: 
PACS:  68.55.J- (Morphology of films)  
  42.65.An (Optical susceptibility, hyperpolarizability)  
  74.25.Gz (Optical properties)  
Fund: Project supported by the National Key Basic Research Program of China (Grant No. 2012CB722703), the National Natural Science Foundation of China (Grant No. 61377061), the Young Leaders of Academic Climbing Project of the Education Department of Zhejiang Province, China (Grant No. pd2013092), the Program for Innovative Research Team of Ningbo City, China (Grant No. 2009B217), and the K. C. Wong Magna Fund in Ningbo University, China.
Corresponding Authors:  Chen Fen     E-mail:  chenfen@nbu.edu.cn
About author:  68.55.J-; 42.65.An; 74.25.Gz

Cite this article: 

Zhang Zhen-Ying (张振营), Chen Fen (陈芬), Lu Shun-Bin (陆顺斌), Wang Yong-Hui (王永辉), Shen Xiang (沈祥), Dai Shi-Xun (戴世勋), Nie Qiu-Hua (聂秋华) Linear and nonlinear optical properties of Sb-doped GeSe2 thin films 2015 Chin. Phys. B 24 066801

[1] Pelusi M D, Ta'eed V G, Fu L, Magi E, Lamont M R E, Madden S, Choi D Y, Bulla D A P, Luther-Davies B and Eggleton B J 2008 IEEE J. Sel. Top. Quantum Electron. 14 529
[2] Chen N K, Kuan P W, Zhang J, Zhang L, Hu L, Lin C and Tong L 2010 Opt. Express 18 25615
[3] Koos C, Jacome L, Poulton C, Leuthold J and Freude W 2007 Opt. Express 15 5976
[4] Táeed V G, Baker N J, Fu L, Finsterbusch K, Lamont M R E, Moss D J, Nguyen H C, Eggleton B J, Choi D Y, Madden S and Luther-Davies B 2007 Opt. Express 15 9205
[5] Eggleton B J, Luther-Davies B and Richardson K 2011 Nat. Photon. 5 141
[6] Nazabal V, Charpentier F, Adam J L, Nemec P, Lhermite H, Brandily-Anne M L, Charrier J, Guin J P and Moréac A 2011 Int. J. Appl. Ceram. Technol. 8 990
[7] Acharya S, Dutta M, Sarkar S, Basak D, Chakraborty S and Pradhan N 2012 Chem. Mater. 24 1779
[8] Zong S F, Shen X, Xu T F, Wang G X, Chen F, Li J, Lin C G and Nie Q H 2013 Acta. Phys. Sin. 62 096801 (in Chinese)
[9] Zakery A and Hatami M 2007 J. Phys. D: Appl. Phys. 40 1010
[10] Táeed V G, Shokooh-Saremi M, Eggleton J, Ruan Y L and Luther-Davies B 2006 IEEE J. Sel. Top. Quantum Electron. 12 360
[11] Táeed V G, Fu L, Pelusi M D, Rochette M, Littler C M, Moss D G and Eggleton B J 2006 Opt. Express 14 10371
[12] Abedin K S 2006 Opt. Express 14 4037
[13] Li J J, Wang G X, Li J, Chen Y M, Shen X, Nie Q H, Lv Y G, Dai S X and Xu T F 2014 Chin. Phys. B 23 087301
[14] Sharma N, Sharda S, Sharma V and Sharma P 2012 Mater. Chem. Phys. 136 967
[15] Swanepoel R 1983 J. Phys. E 16 1214
[16] Elliott S R 2000 The Physics and Chemistry of Solids (Chichester: Wiley)
[17] Wemple S H and DiDomenico M 1971 Phys. Rev. B 3 1338
[18] Chen Y, Xu T F, Shen X, Wang R P, Zong S F, Dai S X and Nie Q H 2013 J. Alloys Compd. 580 578
[19] Tanaka K 1980 Thin Solid Films 66 271
[20] Tauc J 1974 Amorphous and Liquid Semiconductors (New York: Plenum Press) p. 159
[21] Bicerano J and Ovshinsky S R 1985 J. Non-cryst. Solids 74 75
[22] Wang R P, Choi D Y, Rode A V, Madden S J and Luther-Davies B 2007 J. Appl. Phys. 101 113517
[23] Lu S B, Zhao C J, Zou Y H, Chen S Q, Chen Y, L Y, Zhang H, Wen S C and Tang D Y 2013 Opt. Express 21 2072
[24] Zhang H, Lu S B, Zheng J, Du J, Wen S C, Tang D Y and Loh K P 2014 Opt. Express 22 7249
[25] Sheik-Bahae M, Said A A, Wei T H, Hagan D J and Van Stryland E W 1990 IEEE J. Quantum Electron. 26 760
[26] Miller R C 1964 Appl. Phys. Lett. 5 17
[27] Yu B L, Zhu C S, Gan F X, Wu X C, Zhang G L, Tang G Q and Chen W J 1997 Opt. Mater. 8 249
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[3] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[4] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[5] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[6] On the structural and optical properties investigation of annealed Zn nanorods in the oxygen flux
Fatemeh Abdi. Chin. Phys. B, 2021, 30(11): 117802.
[7] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
[8] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
[9] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[10] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[11] Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2020, 29(4): 047801.
[12] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[13] Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$. Chin. Phys. B, 2020, 29(11): 116102.
[14] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[15] Optical and electrical properties of InGaZnON thin films
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平). Chin. Phys. B, 2020, 29(1): 018105.
No Suggested Reading articles found!