Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 057301    DOI: 10.1088/1674-1056/24/5/057301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Modified method of surface plasmons in metal superlattices

Zhang Yu-Lianga, Wang Xuan-Zhangb
a Department of Physics, Harbin Institute of Technology, Harbin 150001, China;
b Key Laboratory for Photonic and Electronic Bandgap Materials, the State Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
Abstract  We present a modified method to solve the surface plasmons (SPs) of semi-infinite metal/dielectric superlattices and predicted new SP modes in physics. We find that four dispersion-equation sets and all possible SP modes are determined by them. Our analysis and numerical calculations indicate that besides the SP mode obtained in the original theory, the other two SP modes are predicted, which have either a positive group velocity or a negative group velocity. We also point out the possible defect in the previous theoretical method in accordance to the linear algebra principle.
Keywords:  surface plasmon      dispersion equations      metal-layer arrays      metal/dielectric superlattices  
Received:  28 August 2014      Revised:  24 December 2014      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.21.Cd (Superlattices)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.70.Qs (Photonic bandgap materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074061).
Corresponding Authors:  Wang Xuan-Zhang     E-mail:  xzwang696@126.com
About author:  73.20.Mf; 73.21.Cd; 78.67.Pt; 42.70.Qs

Cite this article: 

Zhang Yu-Liang, Wang Xuan-Zhang Modified method of surface plasmons in metal superlattices 2015 Chin. Phys. B 24 057301

[1] Morishita T, Togami Y and Tsushima K 1985 J. Phys. Soc. Jpn. 54 37
[2] Weller D, Alwarado S F, Gudar W, Schroder K and Campagna M 1985 Phys. Rev. Lett. 54 1555
[3] Camley R E and Stamps R L 1993 J. Phys.: Condens. Matters 5 3727
[4] Binasch G, Grunberg P, Saurenbach F and Zinn W 1989 Phys. Rev. B 39 4828
[5] Baibich M N, Brotto J M, Fert A, Van-Dau F N, Petroff F, Etiennce P, Creuzet P, Friederich A and Chazelas J 1988 Phys. Rev. Lett. 61 2472
[6] Barnas J, Fuss A, Camley R E, Grunberg P and Zinn W 1990 Phys. Rev. B 42 8110
[7] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[8] Pitarke J M, Silkin V M, Chulkov E V and Echenique P M 2007 Rep. Prog. Phys. 70 1
[9] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[10] Pendry J B, Martin-Moreno L and Garica-Vidal F J 2005 Science 305 847
[11] Liu Y, Ma Z, Zhao Y F, Meenakshi S and Wang J 2013 Chin. Phys. B 22 067302
[12] Camley R E and Mills D L 1984 Phys. Rev. B 29 1695
[13] Camley R E and Mills D L 1988 Phys. Rev. B 37 10378
[14] Johnson B L, Weiler J T and Camley R E 1985 Phys. Rev. B 32 6544
[15] Mahmood S H, Malkawi A and Abu-Aljarayesh I 1989 Phys. Rev. B 40 988
[16] Kushwaha M S 1990 Phys. Rev. B 41 5602
[17] Albuquerque E L and Cottam M G 1993 Phys. Rep. 233 67
[18] Yan M and Qiu M 2007 J. Opt. Soc. Am. B 24 2333
[19] Palik E D 1985 Handbook of Optical Constants of Solids Part II (Orlando: Academic Press) Subpart 1
[1] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[2] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[3] Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy
Qin-Fang Shi(石勤芳), Song-Lin Yang(杨松林), Yu-Rong Cao(曹玉蓉), Xiao-Qing Wang(王晓晴), Tao Chen(陈涛), and Yong-Hong Ye(叶永红). Chin. Phys. B, 2021, 30(4): 040702.
[4] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[5] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[6] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[7] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[8] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[9] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[10] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[11] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[12] Selective excitation of multipolar surface plasmon in a graphene-coated dielectric particle by Laguerre Gaussian beam
Yang Yang(杨阳), Guanghua Zhang(张光华), Xiaoyu Dai(戴小玉). Chin. Phys. B, 2020, 29(5): 057302.
[13] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[14] Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates
A E Ershov, V S Gerasimov, I L Isaev, A P Gavrilyuk, S V Karpov. Chin. Phys. B, 2020, 29(3): 037802.
[15] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
No Suggested Reading articles found!