Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 050309    DOI: 10.1088/1674-1056/24/5/050309
GENERAL Prev   Next  

A long-distance quantum key distribution scheme based on pre-detection of optical pulse with auxiliary state

Quan Dong-Xiao, Zhu Chang-Hua, Liu Shi-Quan, Pei Chang-Xing
State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071, China
Abstract  We construct a circuit based on PBS and CNOT gates, which can be used to determine whether the input pulse is empty or not according to the detection result of the auxiliary state, while the input state will not be changed. The circuit can be treated as a pre-detection device. Equipping the pre-detection device in the front of the receiver of the quantum key distribution (QKD) can reduce the influence of the dark count of the detector, hence increasing the secure communication distance significantly. Simulation results show that the secure communication distance can reach 516 km and 479 km for QKD with perfect single photon source and decoy-state QKD with weak coherent photon source, respectively.
Keywords:  quantum key distribution      pre-detection      secure communication distance      decoy state  
Received:  02 September 2014      Revised:  20 November 2014      Published:  05 May 2015
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61372076), the Programme of Introducing Talents of Discipline to Universities, China (Grant No. B08038), and the Fundamental Research Funds for the Central Universities, China (Grant No. K5051201021).
Corresponding Authors:  Quan Dong-Xiao     E-mail:  dxquan@xidian.edu.cn
About author:  03.67.Hk; 03.67.Dd; 03.67.Ac

Cite this article: 

Quan Dong-Xiao, Zhu Chang-Hua, Liu Shi-Quan, Pei Chang-Xing A long-distance quantum key distribution scheme based on pre-detection of optical pulse with auxiliary state 2015 Chin. Phys. B 24 050309

[1] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore, India) p. 175
[2] Ekert A 1991 Phys. Rev. Lett. 67 661
[3] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[4] LO H K and Chau H 1999 Science 283 2050
[5] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[6] Gottesman D, Lo H K, Lutkenhaus N and Preskill J 2004 Quantum Inf. Comput. 4 325
[7] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[8] Wang X B 2005 Phys. Rev. Lett. 94 230503
[9] Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[10] Chi H H, Yu Z W and Wang X B 2012 Phys. Rev. A 86 042307
[11] Piparo N L and Razavi M 2012 Phys. Rev. A 88 012332
[12] Jiao R Z, Zhang C and Ma H Q 2011 Acta Phys. Sin. 60 110303 (in Chinese)
[13] Xu F X, Wang S, Han Z F and Guo G C 2010 Chin. Phys. B 19 100312
[14] Wang Q, Wang X B, Björk G and Karlsson A 2007 EPL 79 40001
[15] Dong C, Zhao S H, Zhao W H, Shi L and Zhao G H 2014 Acta Phys. Sin. 63 030302 (in Chinese)
[16] Yu Z W, Zhou Y H and Wang X B 2013 Phys. Rev. A 88 062339
[17] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[18] Bostrom K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[19] Wojcik A 2003 Phys. Rev. Lett. 90 157901
[20] Mladen P 2013 Phys. Rev. A 87 042326
[21] Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762
[1] One-decoy state reference-frame-independent quantum key distribution
Xiang Li(李想), Hua-Wei Yuan(远华伟), Chun-Mei Zhang(张春梅), Qin Wang(王琴). Chin. Phys. B, 2020, 29(7): 070303.
[2] Hybrid linear amplifier-involved detection for continuous variable quantum key distribution with thermal states
Yu-Qian He(贺宇千), Yun Mao(毛云), Hai Zhong(钟海), Duang Huang(黄端), Ying Guo(郭迎). Chin. Phys. B, 2020, 29(5): 050309.
[3] Reconciliation for CV-QKD using globally-coupled LDPC codes
Jin-Jing Shi(石金晶), Bo-Peng Li(李伯鹏), Duan Huang(黄端). Chin. Phys. B, 2020, 29(4): 040301.
[4] Reference-frame-independent quantum key distribution with an untrusted source
Jia-Ji Li(李家骥), Yang Wang(汪洋), Hong-Wei Li(李宏伟), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(3): 030303.
[5] Performance analysis of continuous-variable measurement-device-independent quantum key distribution under diverse weather conditions
Shu-Jing Zhang(张淑静), Chen Xiao(肖晨), Chun Zhou(周淳), Xiang Wang(汪翔), Jian-Shu Yao(要建姝), Hai-Long Zhang(张海龙), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(2): 020301.
[6] Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter
Ge-Hai Du(杜舸海), Hong-Wei Li(李宏伟), Yang Wang(汪洋), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(9): 090301.
[7] Temperature effects on atmospheric continuous-variable quantum key distribution
Shu-Jing Zhang(张淑静), Hong-Xin Ma(马鸿鑫), Xiang Wang(汪翔), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏), Hai-Long Zhang(张海龙). Chin. Phys. B, 2019, 28(8): 080304.
[8] Proof-of-principle experimental demonstration of quantum secure imaging based on quantum key distribution
Yi-Bo Zhao(赵义博), Wan-Li Zhang(张万里), Dong Wang(王东), Xiao-Tian Song(宋萧天), Liang-Jiang Zhou(周良将), Chi-Biao Ding(丁赤飚). Chin. Phys. B, 2019, 28(10): 104203.
[9] Finite-size analysis of continuous-variable quantum key distribution with entanglement in the middle
Ying Guo(郭迎), Yu Su(苏玉), Jian Zhou(周健), Ling Zhang(张玲), Duan Huang(黄端). Chin. Phys. B, 2019, 28(1): 010305.
[10] Finite-size analysis of eight-state continuous-variable quantum key distribution with the linear optics cloning machine
Hang Zhang(张航), Yu Mao(毛宇), Duan Huang(黄端), Ying Guo(郭迎), Xiaodong Wu(吴晓东), Ling Zhang(张玲). Chin. Phys. B, 2018, 27(9): 090307.
[11] Controlling a sine wave gating single-photon detector by exploiting its filtering loophole
Lin-Xi Feng(冯林溪), Mu-Sheng Jiang(江木生), Wan-Su Bao(鲍皖苏), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋). Chin. Phys. B, 2018, 27(8): 080305.
[12] Continuous-variable quantum key distribution based on continuous random basis choice
Weiqi Liu(刘维琪), Jinye Peng(彭进业), Peng Huang(黄鹏), Shiyu Wang(汪诗寓), Tao Wang(王涛), Guihua Zeng(曾贵华). Chin. Phys. B, 2018, 27(7): 070305.
[13] Practical security of continuous-variable quantum key distribution under finite-dimensional effect of multi-dimensional reconciliation
Yingming Zhou(周颖明), Xue-Qin Jiang(蒋学芹), Weiqi Liu(刘维琪), Tao Wang(王涛), Peng Huang(黄鹏), Guihua Zeng(曾贵华). Chin. Phys. B, 2018, 27(5): 050301.
[14] Passive round-robin differential-quadrature-phase-shift quantum key distribution scheme with untrusted detectors
Hongwei Liu(刘宏伟), Wenxiu Qu(屈文秀), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Yong Zhang(张勇), Haiqiang Ma(马海强). Chin. Phys. B, 2018, 27(10): 100309.
[15] Improved quantum randomness amplification with finite number of untrusted devices based on a novel extractor
Ming-Feng Xu(徐明峰), Wei Pan(潘炜), Lian-Shan Yan(闫连山), Bin Luo(罗斌), Xi-Hua Zou(邹喜华), Peng-Hua Mu(穆鹏华), Li-Yue Zhang(张力月). Chin. Phys. B, 2018, 27(1): 010305.
No Suggested Reading articles found!