Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 038201    DOI: 10.1088/1674-1056/24/3/038201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization

Zhang Ying-Yinga b, Xie Ting-Xianc, Li Ze-Ruia b, Shi Yinga b, Jin Ming-Xinga b
a Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
b Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China;
c Department of Physics, Dalian Jiaotong University, Dalian 116028, China
Abstract  A quasi-classical trajectory (QCT) calculation is used to investigate the vector and scalar properties of the D+BrO→DBr+O reaction based on an ab initio potential energy surface (X1A' state) with collision energy ranging from 0.1 kcal/mol to 6 kcal/mol. The reaction probability, the cross section, and the rate constant are studied. The probability and the cross section show decreasing behaviors as the collision energy increases. The distribution of the rate constant indicates that the reaction favorably occurs in a relatively low-temperature region (T < 100K). Meanwhile, three product angular distributions P(θr), P(ør), and P(θr,ør) are presented, which reflect the positive effect on the rotational angular momentum j' polarization of the DBr product molecule. In addition, two of the polarization-dependent generalized differential cross sections (PDDCSs), PDDCS00 and PDDCS20, are computed as well. Our results demonstrate that both vector and scalar properties have strong energy dependence.
Keywords:  quasi-classical trajectory      cross section      rate constant      product angular distributions  
Received:  19 September 2014      Revised:  21 October 2014      Accepted manuscript online: 
PACS:  82.20.Pm (Rate constants, reaction cross sections, and activation energies)  
  82.20.Fd (Collision theories; trajectory models)  
  82.20.Kh (Potential energy surfaces for chemical reactions)  
Fund: Project supported by the Jilin University, China (Grant No. 419080106440), the Chinese National Fusion Project for the International Thermonuclear Experimental Reactor (ITER) (Grant No. 2010GB104003), and the National Natural Science Foundation of China (Grant No. 10974069).
Corresponding Authors:  Xie Ting-Xian, Shi Ying     E-mail:  xietingx@djtu.edu.cn;shi_ying@jlu.edu.cn

Cite this article: 

Zhang Ying-Ying, Xie Ting-Xian, Li Ze-Rui, Shi Ying, Jin Ming-Xing Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization 2015 Chin. Phys. B 24 038201

[1] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[2] Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964
[3] Aguado A, Suárez C and M. Paniagua 1995 Chem. Phys. 201 107
[4] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
[5] Skokov S, Peterson K A and Bowman J M 1998 J. Chem. Phys. 109 2662
[6] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[7] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[8] Shi Y, Xie T X and Jin M X 2011 Chin. J. Chem. Phys. 24 373
[9] Wei Q, Li X and Li T 2009 Chin. J. Chem. Phys. 22 523
[10] Xie T X 2012 J. Theor. Comput. Chem. 11 561
[11] Wine P H, Wells J R and Ravishankara A R 1986 J. Chem. Phys. 84 1349
[12] Orphal J, Kou Q, Tchana F K, Pirali O and Flaud J M 2003 J. Mol. Spectrosc. 221 239
[13] Cronkhite J M and Wine P H 1998 Int. J. Chem. Kinet. 30 555
[14] Zhang Y Y, Shi Y, Xie T X, Jin M X and Hu Z 2013 Chin. Phys. B 22 083402
[15] Li H, Zheng B, Yin J Q and Meng Q T 2012 J. At. Mol. Sci. 3 114
[16] Koga K, Takeo H, Kondo S, Sugie M, Matsumura C, McRae G A and Cohen E A 1989 J. Mol. Spectrosc. 138 467
[17] Brown R D H and Smith I W M 1975 Int. J. Chem. Kinet. 7 301
[18] McKendrick K G, Rakestraw D J, Zhang R and Zare R N 1988 J. Phys. Chem. 92 5530
[19] Balucani N, Beneventi L, Casavecchia P, Volpi G G, Kruss E J and Sloan J J 1994 Can. J. Chem. 72 888
[20] Peterson K A 2000 J. Chem. Phys. 113 4598
[21] Tang B Y, Tang Q K, Chen M D, Han K L and Zhang J Z H 2004 J. Chem. Phys. 120 8537
[22] Xie T X, Zhang Y Y, Shi Y, Li Z R and Jin M X Chin. Phys. B (Accepted)
[23] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[24] Zhang L, Chen M D, Wang M L and Han K L 2000 J. Chem. Phys. 112 3710
[25] Yue X F 2010 Chin. Phys. B 19 043401
[26] Li W L, Wang M S, Dong Y M and Yang C L 2008 Chem. Phys. 348 97
[27] Li X H, Wang M S, Pino I, Yang C L and Ma L Z 2009 Chem. Phys. Phys. Chem. 11 1043
[28] Ju L P, Han K L and Zhang J Z H 2009 J. Comput. Chem. 30 305
[29] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[30] Zhao L, Sun P and Liu C Z 2011 Chin. Phys. Lett. 28 083101
[31] Chen Y Y and Zhao M Y 2012 J. Theor. Comput.Chem. 11 87
[32] Zhao D, He X H and Guo W 2014 Can. J. Chem. 92 250
[33] Meng Q T, Zhao J, Xu Y and Yue D G 2009 Chem. Phys. 362 65
[34] Gao S B, Wei W, Zheng B, Song Y Z and Meng Q T 2014 Int. J. Quan. Chem. 114 748
[35] Hankel M and Yue X F 2012 Comput. Theor. Chem. 990 23
[36] Liu R Z, Ding Y J, Wen C Y, Li J F, Zhong M W and Shi Y 2011 J. Theor. Comput.Chem. 10 447
[37] Aoiz F J, Ba nares L and Castillo J F 1999 J. Chem. Phys. 111 4013
[38] Tang B Y, Yang B H, Han K L, Zhang R Q and Zhang J Z H 2000 J. Chem. Phys. 113 10105
[39] Wu T, Werner H J and Manthe U 2006 J. Chem. Phys. 124 164307
[40] Wang Y P, Zhao M Y, Yao S H, Song P and Ma F C 2013 Chin. Phys. B 22 128201
[41] Duan Z X, Qiu M H and Yao C X 2014 Acta Phys. Sin. 63 063402 (in Chinese)
[42] Liu S L and Shi Y 2010 Chin. Phys. Lett. 27 123103
[43] Yue X F 2013 Chin. Phys. B 22 113401
[44] Lin S Y and Guo H 2006 J. Chem. Phys. 124 031101
[45] Defazio P, Gamallo P, González M, Akpinar S, Bussery-Honvault B, Honvault P and Petrongolo C 2010 J. Chem. Phys. 132 104306
[46] Padmanaban R and Mahapatra S 2004 J. Chem. Phys. 121 7681
[47] Xu C X, Xie D Q, Honvault P, Lin S Y and Guo H 2007 J. Chem. Phys. 127 024304
[48] Jorfi M, Honvault P, Halvick P, Lin S Y and Guo H 2008 Chem. Phys. Lett. 462 53
[49] Jorfi M, Honvault P and Halvick P 2009 Chem. Phys. Lett. 471 65
[50] Liu Y F, Gao Y L, Shi D H and Sun J F 2009 Chem. Phys. 364 46
[51] Li W L, Wang M S, Yang C L, Liu W W, Sun C and Ren T Q 2007 Chem. Phys. 337 93
[52] Zhu T, Hu G D and Zhang Q G 2010 J. Mol. Struc. 948 36
[53] Liu S L and Shi Y 2011 Chem. Phys. Lett. 501 197
[1] Study on γ-ray source from the resonant reaction 19F(p,αγ)16O at Ep=340 keV
Fu-Long Liu(刘伏龙), Wan-Sha Yang(杨婉莎), Ji-Hong Wei(魏继红), Di Wu(吴笛), Yang-Fan He(何阳帆), Yu-Chen Li(李雨尘), Tian-Li Ma(马田丽), Yang-Ping Shen(谌阳平), Qi-Wen Fan(樊启文), Chuang-Ye He(贺创业), Bing Guo(郭冰), Nai-Yan Wang(王乃彦). Chin. Phys. B, 2020, 29(7): 070702.
[2] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[3] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[4] Double differential cross sections for ionization of H by 75 keV proton impact: Assessing the role of correlated wave functions
Jungang Fan(范军刚), Xiangyang Miao(苗向阳), and Xiangfu Jia(贾祥福). Chin. Phys. B, 2020, 29(12): 120301.
[5] Electron capture in collisions of Li3+ ions with ground andexcited states of Li atoms
M X Ma(马茗萱), B H Kou(寇博珩), L Liu(刘玲), Y Wu(吴勇), J G Wang(王建国). Chin. Phys. B, 2020, 29(1): 013401.
[6] Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧). Chin. Phys. B, 2019, 28(8): 083402.
[7] Factors influencing electromagnetic scattering from the dielectric periodic surface
Yinyu Wei(韦尹煜), Zhensen Wu(吴振森), Haiying Li(李海英), Jiaji Wu(吴家骥), Tan Qu(屈檀). Chin. Phys. B, 2019, 28(7): 074101.
[8] Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃). Chin. Phys. B, 2019, 28(6): 063401.
[9] Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction
Hongsheng Zhai(翟红生), Guanglei Liang(梁广雷), Junxia Ding(丁俊霞), Yufang Liu(刘玉芳). Chin. Phys. B, 2019, 28(5): 053401.
[10] Quantum photodetachment of hydrogen negative ion in a harmonic potential subjected to static electric field
Azmat Iqbal, Kiran Humayun, Sana Maqsood, Saba Jawaid, Afaq Ahmad, Amin Ur Rahman, Bakht Amin Bacha. Chin. Phys. B, 2019, 28(2): 023201.
[11] Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics
Ting Xu(许婷), Juan Zhao(赵娟), Xian-Long Wang(王宪龙), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2019, 28(2): 023102.
[12] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[13] Relativistic R-matrix calculations for L-shell photoionization cross sections of C Ⅱ
Lu-You Xie(颉录有), Qian-Qian Man(满倩倩), Jian-Guo Wang(王建国), Yi-Zhi Qu(屈一至), Chen-Zhong Dong(董晨钟). Chin. Phys. B, 2018, 27(8): 083201.
[14] Reliable approach for bistatic scattering of three-dimensional targets from underlying rough surface based on parabolic equation
Dong-Min Zhang(张东民), Cheng Liao(廖成), Liang Zhou(周亮), Xiao-Chuan Deng(邓小川), Ju Feng(冯菊). Chin. Phys. B, 2018, 27(7): 074102.
[15] Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇). Chin. Phys. B, 2018, 27(6): 063401.
No Suggested Reading articles found!