Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 037509    DOI: 10.1088/1674-1056/24/3/037509
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantitative calculations of polarizations arising from the symmetric and antisymmetric exchange strictions in Tm-doped GdMnO3

Qin Ming-Hui (秦明辉)a, Lin Lin (林林)b, Li Lin (李林)b, Jia Xing-Tao (贾兴涛)c, Liu Jun-Ming (刘俊明)b
a Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China;
b Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China;
c School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, China
Abstract  

The ferroelectric polarization and phase diagram in Tm-doped GdMnO3 are studied by means of Monte Carlo simulation based on the Mochizuki-Furukawa model. Our work well reproduces the low temperature polarization at various substitution levels observed experimentally. It is demonstrated that the Tm-doping can control the multiferroic behaviors through modulating the spin structures, resulting in the flop of the electric polarization. In addition, the polarization in the ab-plane cycloidal spin phase arises from comparable contributions of the symmetric exchange striction and antisymmetric exchange striction, leading to much bigger polarization than that in the bc-plane cycloidal spin phase where only the contribution of the latter striction is available. The phase diagram obtained in our simulation is helpful for clarifying the multiferroic properties in doped manganite systems and other related multiferroics.

Keywords:  multiferroics      cycloidal spin order      polarization      Monte Carlo simulation  
Received:  12 September 2014      Revised:  15 October 2014      Accepted manuscript online: 
PACS:  75.80.+q (Magnetomechanical effects, magnetostriction)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11204091, 11274094, and 51332007) and the National Basic Research Program of China (Grant Nos. 2015CB921202 and 2011CB922101).

Corresponding Authors:  Qin Ming-Hui, Liu Jun-Ming     E-mail:  qinmh@scnu.edu.cn;liujm@nju.edu.cn

Cite this article: 

Qin Ming-Hui (秦明辉), Lin Lin (林林), Li Lin (李林), Jia Xing-Tao (贾兴涛), Liu Jun-Ming (刘俊明) Quantitative calculations of polarizations arising from the symmetric and antisymmetric exchange strictions in Tm-doped GdMnO3 2015 Chin. Phys. B 24 037509

[1] Cheong S W and Mostovoy M 2007 Nat. Mater. 6 13
[2] Wang K F, Liu J M and Ren Z F 2009 Adv. Phys. 58 321
[3] Lunkenheimer P, Muller J, Krohns S, Schrettle F, Loidl A, Hartmann B, Rommel R, Desouza M, Hotta C, Schlueter J A and Lang M 2012 Nat. Mater. 11 755
[4] Kimura T, Goto T, Shintani T H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55
[5] Goto T, Kimura T, Lawes G, Ramirez A P and Tokura Y 2004 Phys. Rev. Lett. 92 257201
[6] Hemberger J, Schrettle F, Pimenov A, Lunkenheimer P, Ivanov V Y, Mukhin A A, Balbashov A M and Loidl A 2007 Phys. Rev. B 75 035118
[7] Katsura H, Nagaosa N and Balatsky A V 2005 Phys. Rev. Lett. 95 057205
[8] Mostovoy M 2006 Phys. Rev. Lett. 96 067601
[9] Sergienko I A and Dagotto E 2006 Phys. Rev. B 73 094434
[10] Arima T, Tokunaga A, Goto T, Kimura H, Noda Y and Tokura Y 2006 Phys. Rev. Lett. 96 097202
[11] Jia C L, Onoda S, Nagaosa N and Han J H 2007 Phys. Rev. B 76 144424
[12] Xiang H J, Kan E J, Zhang Y, Whangbo M H and Gong X G 2011 Phys. Rev. Lett. 107 157202
[13] Chen H B, Zhou Y and Li Y Q 2013 J. Phys.: Condens. Matter 25 286004
[14] Tanabe Y, Moriya T and Sugano S 1965 Phys. Rev. Lett. 15 1023
[15] Zhou T, Wang H T, Hong B, Tao Q and Xu Z A 2011 Chin. Phys. Lett. 28 027501
[16] Ishiwata S, Kaneko Y, Tokunaga Y, Taguchi Y, Arima T H and Tokura Y 2010 Phys. Rev. B 81 100411
[17] Goto T, Yamasaki Y, Watanabe H, Kimura T and Tokura Y 2005 Phys. Rev. B 72 220403
[18] Mochizuki M and Furukawa N 2009 Phys. Rev. B 80 134416
[19] Mochizuki M, Furukawa N and Nagaosa N 2011 Phys. Rev. B 84 144409
[20] Mochizuki M and Furukawa N 2010 Phys. Rev. Lett. 105 187601
[21] Mochizuki M, Furukawa N and Nagaosa N 2010 Phys. Rev. Lett. 104 177206
[22] Mochizuki M and Nagaosa N 2010 Phys. Rev. Lett. 105 147202
[23] Mochizuki M, Furukawa N and Nagaosa N 2010 Phys. Rev. Lett. 105 037205
[24] Qin M H, Tao Y M, Dong S, Zhao H B, Gao X S and Liu J M 2011 Appl. Phys. Lett. 98 102510
[25] Flynn D O, Tomy C V, Lees M R, Aladine A D and Balakrishnan G 2011 Phys. Rev. B 83 174426
[26] Li L, Lin L, Yan Z B, He Q Y and Liu J M 2012 J. Appl. Phys. 112 034115
[27] Mori T, Kamegashira N, Aoki K, Shishido T and Fukuda T 2002 Mater. Lett. 54 238
[28] Landau D P and Binder K 2005 A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge: Cambridge University Press)
[29] Hukushima K and Nemoto K 1996 J. Phys. Soc. Jpn. 65 1604
[30] Kimura T, Lawes G, Goto T, Tokura Y and Ramirez A P 2005 Phys. Rev. B 71 224425
[31] Dong S and Liu J M 2012 Mod. Phys. Lett. 26 1230004
[32] Liu J M, Chan L W and Choy C L 2009 Chin. Phys. Lett. 26 087501
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[4] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[5] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[6] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[7] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[8] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[9] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[10] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[11] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[12] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[13] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[14] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[15] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
No Suggested Reading articles found!