Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 117204    DOI: 10.1088/1674-1056/24/11/117204
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Transport properties of zigzag graphene nanoribbons adsorbed with single iron atom

Yang Yu-E, Xiao Yang, Yan Xiao-Hong, Dai Chang-Jie
Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
Abstract  We have performed density-functional calculations of the transport properties of the zigzag graphene nanoribbon (ZGNR) adsorbed with a single iron atom. Two adsorption configurations are considered, i.e., iron adsorbed on the edge and on the interior of the nanoribbon. The results show that the transport features of the two configurations are similar. However, the transport properties are modified due to the scattering effects induced by coupling of the ZGNR band states to the localized 3d-orbital state of the iron atom. More importantly, one can find that several dips appear in the transmission curve, which is closely related to the above mentioned coupling. We expect that our results will have potential applications in graphene-based spintronic devices.
Keywords:  graphene nanoribbon      transport properties      iron adatom  
Received:  19 April 2015      Revised:  11 June 2015      Published:  05 November 2015
PACS:  72.80.Vp (Electronic transport in graphene)  
  72.25.-b (Spin polarized transport)  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374162 and 51032002) and the Key Project of the National High Technology Research and Development Program of China (Grant No. 2011AA050526).
Corresponding Authors:  Xiao Yang     E-mail:  fryxiao@nuaa.edu.cn

Cite this article: 

Yang Yu-E, Xiao Yang, Yan Xiao-Hong, Dai Chang-Jie Transport properties of zigzag graphene nanoribbons adsorbed with single iron atom 2015 Chin. Phys. B 24 117204

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Gregorieva I V and Firsov A A;2004 Science 306 666
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Gregorieva I V, Dubonos S V and Firsov A A;2005 Nature 438 197
[3] Zhang Y, Tan Y W, Stormer H L and Kim P;2005 Nature 438 201
[4] Wei Z J, Fu Y Y, Liu J B, Wang Z D, Jia Y H, Guo J, Ren L M, Chen Y F, Zhang H, Huang R and Zhang X;2014 Chin. Phys. B 23 117201
[5] Fang C, Liang T X and Sun L F;2013 Chin. Phys. Lett. 30 047201
[6] Amara H, Latil S, Meunier V, Lambin P and Charlier J C;2007 Phy. Rev. B 76 115423
[7] Zheng Y and Ando T;2002 Phys. Rev. B 65 245420
[8] Du X, Skachko I, Barker A and Andrei E Y;2008 Nat. Nanotech. 3 491
[9] Bolotin K I, Sikes K J, Hone J, Stormer H L and Kim P;2008 Phys. Rev. Lett. 101 096802
[10] Wu Y Q, Ye P D, Capano M A, Xuan Y, Sui Y and Qi M;2008 Appl. Phys. Lett. 92 092102
[11] Ezawa M;2006 Phys. Rev. B 73 045432
[12] Brey L and Fertig H A;2006 Phys. Rev. B 73 235411
[13] Zheng H X, Wang Z F, Luo T, Shi Q W and Chen J;2007 Phys. Rev. B 75 165414
[14] Wang Z F, Li Q X, Zheng H X, Ren H and Su H B;2007 Phys. Rev. B 75 113406
[15] Zeng H, Zhao J, Wei J W and Hu H F;2011 Eur. Phys. J. B 79 335
[16] Zheng H X and Duley W;2008 Phys. Rev. B 78 045421
[17] Song L L, Zheng X H, Wang R L and Zeng Z;2010 J. Phys. Chem. C 114 12145
[18] Li B, Xu D H and Zeng H;2014 Acta Phys. Sin. 63 117102 (in Chinese)
[19] Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H and Ouyang F P;2012 Chin. Phys. B 21 027102
[20] Zheng X H, Song L L, Wang R N, Hao H, Guo L J and Zeng Z;2010 Appl. Phys. Lett. 97 153129
[21] Xu J M, Hu X H and Sun L T 2012 Acta Phys. Sin. 61 027104 (in Chinese)
[22] Zhang H Z, Meng S, Yang H F, Li L, Fu H X, Ma W, Niu C Y, Sun J T and Gu C Z;2015 J. Appl. Phys. 117 113902
[23] Longo R C, Carrete J and Gallego L J;2011 Phys. Rev. B 83 235415
[24] Jaiswal N K and Srivastava P;2013 Physica E 54 103
[25] Rigo V A, Martins T B, Silva A J R, Fazzio A and Miwa R H;2009 Phys. Rev. B 79 075435
[26] Martins T B, Miwa R H, Silva A J R and Fazzio A;2007 Phys. Rev. Lett. 98 196803
[27] Caterina C, Deborah P, Arrigo C and Elisa M;2010 J. Chem. Phys. 133 124703
[28] Gyamfi M, Eelbo T, Wasniowska M and Wiesendanger R;2011 Phys. Rev. B 84 113403
[29] Eelbo T, Wasniowska M and Thakur P;2013 Phys. Rev. Lett. 110 136804
[30] Hohenberg P and Kohn W;1964 Phys. Rev. B 136 864
[31] Perdew J P, Burke K and Ernzerhof M;1996 Phys. Rev. Lett. 77 3865
[32] Ceperley D M and Alder B J;1980 Phys. Rev. Lett. 45 566
[33] Keldysh L V 1965 Sov. Phys. JETP 20 1018
[34] Caroli C, Combescot R, Nozieres P and Saint J D;1971 J. Phys. C 4 916
[35] Kondo H, Kino H, Nara J, Ozaki T and Ohno T;2006 Phys. Rev. B 73 235323
[36] http://www.openmx-square.org/
[37] Guo Y D, Yan X H and Xiao Y;2013 J. Appl. Phys. 113 244302
[38] Choi H J, Ihm J, Louie S G and Cohen M L;2000 Phys. Rev. Lett. 84 2917
[39] Fernández-Serra M V, Adessi C and Blase X;2006 Nano. Lett. 6 2674
[40] Fernández-Serra M V, Adessi C and Blase X;2006 Phys. Rev. Lett. 96 166805
[41] Li Z Y, Qian H Y, Wu J, Gu B L and Duan W H;2008 Phys. Rev. Lett. 100 206802
[1] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[2] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[3] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[4] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[5] Different noncollinear magnetizations on two edges of zigzag graphene nanoribbons
Yang Xiao(肖杨), Qiaoli Ye(叶巧利), Jintao Liang(梁锦涛), Xiaohong Yan(颜晓红), and Ying Zhang(张影). Chin. Phys. B, 2020, 29(12): 127201.
[6] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[7] Modulated thermal transport for flexural and in-plane phonons in double-stub graphene nanoribbons
Chang-Ning Pan(潘长宁), Meng-Qiu Long(龙孟秋), Jun He(何军). Chin. Phys. B, 2018, 27(8): 088101.
[8] Growth and transport properties of topological insulator Bi2Se3 thin film on a ferromagnetic insulating substrate
Shanna Zhu(朱珊娜), Gang Shi(史刚), Peng Zhao(赵鹏), Dechao Meng(孟德超), Genhao Liang(梁根豪), Xiaofang Zhai(翟晓芳), Yalin Lu(陆亚林), Yongqing Li(李永庆), Lan Chen(陈岚), Kehui Wu(吴克辉). Chin. Phys. B, 2018, 27(7): 076801.
[9] Non-monotonic dependence of current upon i-width in silicon p-i-n diodes
Zheng-Peng Pang(庞正鹏), Xin Wang(王欣), Jian Chen(陈健), Pan Yang(杨盼), Yang Zhang(张洋), Yong-Hui Tian(田永辉), Jian-Hong Yang(杨建红). Chin. Phys. B, 2018, 27(6): 066106.
[10] Multinary diamond-like chalcogenides for promising thermoelectric application
Dan Zhang(张旦), Hong-Chang Bai(白洪昌), Zhi-Liang Li(李志亮), Jiang-Long Wang(王江龙), Guang-Sheng Fu(傅广生), Shu-Fang Wang(王淑芳). Chin. Phys. B, 2018, 27(4): 047206.
[11] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
[12] Antiferromagnetic–ferromagnetic transition in zigzag graphene nanoribbons induced by substitutional doping
Shenyuan Yang(杨身园), Jing Li(李静), Shu-Shen Li(李树深). Chin. Phys. B, 2018, 27(11): 117102.
[13] Transport properties of doped Bi2Se3 and Bi2Te3 topological insulators and heterostructures
Zhen-Hua Wang(王振华), Xuan P A Gao(高翾), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2018, 27(10): 107901.
[14] Transport properties of mixing conduction in CaF2 nanocrystals under high pressure
Ting-Jing Hu(胡廷静), Xiao-Yan Cui(崔晓岩), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2018, 27(1): 016401.
[15] Spin-filter effect and spin-polarized optoelectronic properties in annulene-based molecular spintronic devices
Zhiyuan Ma(马志远), Ying Li(李莹), Xian-Jiang Song(宋贤江), Zhi Yang(杨致), Li-Chun Xu(徐利春), Ruiping Liu(刘瑞萍), Xuguang Liu(刘旭光), Dianyin Hu(胡殿印). Chin. Phys. B, 2017, 26(6): 067201.
No Suggested Reading articles found!