Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 114206    DOI: 10.1088/1674-1056/24/11/114206

Role of the aperture in Z-scan experiments: A parametric study

M. R. Rashidian Vaziri
Laser and Optics Research School, NSTRI, Tehran, Iran
Abstract  In close-aperture Z-scan experiments, a small aperture is conventionally located in the far-field thereby enabling the detection of slight changes in the laser beam profile due to the Kerr-lensing effect. In this work, by numerically solving the Fresnel-Kirchhoff diffraction integrals, the amount of transmitted power through apertures has been evaluated and a parametric study on the role of the various parameters that can influence this transmitted power has been done. In order to perform a comprehensive analysis, we have used a nonlinear phase shift optimized for nonlocal nonlinear media in our calculations. Our results show that apertures will result in the formation of symmetrical fluctuations on the wings of Z-scan transmittance curves. It is further shown that the appearance of these fluctuations can be ascribed to the natural diffraction of the Gaussian beam as it propagates up to the aperture plane. Our calculations reveal that the nonlocal parameter variations can shift the position of fluctuations along the optical axis, whereas their magnitude depends on the largeness of the induced nonlinear phase shift. It is concluded that since the mentioned fluctuations are produced by the natural diffraction of the Gaussian beam itself, one must take care not to mistakenly interpret them as noise and should not expect to eliminate them from experimental Z-scan transmittance curves by using apertures with different sizes.
Keywords:  nonlinear optics      Kerr effect      Z-scan      electromagnetic wave propagation     
Received:  14 March 2015      Published:  05 November 2015
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Corresponding Authors:  M. R. Rashidian Vaziri     E-mail:

Cite this article: 

M. R. Rashidian Vaziri Role of the aperture in Z-scan experiments: A parametric study 2015 Chin. Phys. B 24 114206

[1] Sheik-Bahae M, Said A A, Wei T H, Hagan D J and van Stryland E W;1990 IEEE J. Quantum Electron. 26 760
[2] Weaire D, Wherrett B S, Miller D A B and Smith S D;1979 Opt. Lett. 4 331
[3] Rashidian Vaziri M R, Hajiesmaeilbaigi F and Maleki M H;2013 J. Opt. 15 025201
[4] Rashidian Vaziri M R;2013 Appl. Opt. 52 4843
[5] Kwak C H, Lee Y L and Kim S G;1999 J. Opt. Soc. Am. B 16 600
[6] Yao B L, Ren L Y and Hou X;2003 J. Opt. Soc. Am. B 20 1290
[7] Chapple P B, Staromlynska J, Hermann J A, Mckay T J and McDuff R G;1997 Int. J. Nonlinear Opt. Phys. 6 251
[8] Rashidian Vaziri M R;2014 Opt. Commun.
[9] Garcia R E V, Arroyo C M L, Mendez O M M, Reynoso L E, Chavez-Cerda S and Iturbe C M D;2011 J. Opt. 13 085203
[10] Ramirez E V G, Carrasco M L A, Otero M M M, Cerda S C and Castillo M D I;2010 Opt. Express 18 22067
[11] Rashidian Vaziri M R;2014 Laser Phys. 23 105401
[12] Deng L, He K, Zhou T and Li C;2005 J. Opt. A: Pure Appl. Opt. 7 409
[13] Rashidian Vaziri M R, Hajiesmaeilbaigi F and Maleki M H;2013 J. Opt. 15 035202
[14] Nascimento C M, Alencar M A R C, Chávez-Cerda S, da Silva M G A, Meneghetti M R and Hickmann J M;2006 J. Opt. A: Pure Appl. Opt. 8 947
[15] Chen S, Liu Z, Zang W, Tian J, Zhou W, Song F and Zhang C;2005 J. Opt. Soc. Am. B 22 1911
[16] Divya S, Nampoori V P N, Radhakrishnan P and Mujeeb A;2014 Chin. Phys. B 23 084203
[17] Henari F Z and Dakhel A A;2008 J. Appl. Phys. 104 033110
[18] Wang K, Long H, Fu M, Yang G and Lu P X;2010 Chin. Phys. Lett. 27 4204
[19] Zeng Y, Pan Z H, Zhao F L, Qin M, Zhou Y and Wang C S;2014 Chin. Phys. B 23 024212
[20] Dakhel A A and Henari F Z;2003 Cryst. Res. Technol. 38 979
[21] Kiran P P, Bhaktha B N S and Rao D N;2004 Appl. Phys. 96 6717
[22] Pálfalvi L, Tóth B C, Almási G, Fülöp J A and Hebling J;2009 Appl. Phys. B 97 679
[23] Lucchetti L, Suchand S and Simoni F;2009 J. Opt. A: Pure Appl. Opt. 11 034002
[24] Hassan Q M, Badran H A, AL-Ahmad A Y and Emshary C A;2013 Chin. Phys. B 22 114209
[25] Farmanfarmaei B, Rashidian Vaziri M R and Hajiesmaeilbaigi F;2014 Quantum Electron. 44 1029
[1] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[2] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[3] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[4] Nonlinear behavior of the population dynamics of three-level systems in the presence of single photon absorption
Allam Srinivasa Rao. Chin. Phys. B, 2019, 28(2): 024211.
[5] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[6] Enhancement and control of the Goos-Hänchen shift bynonlinear surface plasmon resonance in graphene
Qi You(游琪), Leyong Jiang(蒋乐勇), Xiaoyu Dai(戴小玉), Yuanjiang Xiang(项元江). Chin. Phys. B, 2018, 27(9): 094211.
[7] Research progress of third-order optical nonlinearity of chalcogenide glasses
Xiao-Yu Zhang(张潇予), Fei-Fei Chen(陈飞飞), Xiang-Hua Zhang(章向华), Wei Ji(季伟). Chin. Phys. B, 2018, 27(8): 084208.
[8] Modulation and mechanism of ultrafast transient spectroscopy based on dimethylamino-carbaldehyde derivatives
Tong-xing Jin(金桐兴), Jun-yi Yang(杨俊义), Yu Fang(方宇), Yan-bing Han(韩艳兵), Ying-lin Song(宋瑛林). Chin. Phys. B, 2018, 27(5): 054208.
[9] Nonlinear spectral cleaning effect in cross-polarized wave generation
Linpeng Yu(於林鹏), Yi Xu(许毅), Fenxiang Wu(吴分翔), Xiaojun Yang(杨晓骏), Zongxin Zhang(张宗昕), Yuanfeng Wu(吴圆峰), Yuxin Leng(冷雨欣), Zhizhan Xu(徐至展). Chin. Phys. B, 2018, 27(5): 054214.
[10] Photonic crystal structures: Beam deflector and beam router
Utku Erdiven, Erkan Tetik, Faruk Karadag. Chin. Phys. B, 2018, 27(4): 044204.
[11] On the nonclassical dynamics of cavity-assisted four-channel nonlinear coupler
Rafael Julius, Abdel-Baset M A Ibrahim, Pankaj Kumar Choudhury, Hichem Eleuch. Chin. Phys. B, 2018, 27(11): 114206.
[12] Spatiotemporal evolution of continuous-wave field and dark soliton formation in a microcavity with normal dispersion
Xiaohong Hu(胡晓鸿), Wei Zhang(张伟), Yuanshan Liu(刘元山), Ye Feng(冯野), Wenfu Zhang(张文富), Leiran Wang(王擂然), Yishan Wang(王屹山), Wei Zhao(赵卫). Chin. Phys. B, 2017, 26(7): 074216.
[13] Numerical investigation on broadband mid-infrared supercontinuum generation in chalcogenide suspended-core fibers
Kundong Mo(莫坤东), Bo Zhai(翟波), Jianfeng Li(李剑峰), E Coscelli, F Poli, A Cucinotta, S Selleri, Chen Wei(韦晨), Yong Liu(刘永). Chin. Phys. B, 2017, 26(5): 054216.
[14] Optical nonlinearities of tetracarbonyl-chromium triphenyl phosphine complex
M D Zidan, A W Allaf, A Allahham, A AL-Zier. Chin. Phys. B, 2017, 26(4): 044205.
[15] Parallel generation of 31 tripartite entangled states based on optical frequency combs
Jing Zhang(张静), Yan-Fang Wang(王艳芳), Xiao-Yu Liu(刘晓宇), Rong-Guo Yang(杨荣国). Chin. Phys. B, 2017, 26(12): 124205.
No Suggested Reading articles found!