Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 106102    DOI: 10.1088/1674-1056/24/10/106102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Influences of surface and flexoelectric polarization on the effective anchoring energy in nematic liquid crystal

Guan Rong-Huaa, Ye Wen-Jiangb, Xing Hong-Yub
a School of Sciences, North China Electric Power University, Baoding 071003, China;
b School of Sciences, Hebei University of Technology, Tianjin 300401, China
Abstract  The physical effects on surface and flexoelectric polarization in a weak anchoring nematic liquid crystal cell are investigated systematically. We derive the analytic expressions of two effective anchoring energies for lower and upper substrates respectively as well as their effective anchoring strengths and corresponding tilt angles of effective easy direction. All of these quantities are relevant to the magnitudes of both two polarizations and the applied voltage U. Based on these expressions, the variations of effective anchoring strength and the tilt angle with the applied voltage are calculated for the fixed values of two polarizations. For an original weak anchoring hybrid aligned nematic cell, it may be equivalent to a planar cell for a small value of U and has a threshold voltage. The variation of reduced threshold voltage with reduced surface polarization strength is also calculated. The role of surface polarization is important without the adsorptive ions considered.
Keywords:  surface and flexoelectric polarization      effective anchoring energy      easy direction      hybrid aligned nematic      threshold voltage  
Received:  28 March 2015      Revised:  25 May 2015      Published:  05 October 2015
PACS:  61.30.Gd (Orientational order of liquid crystals; electric and magnetic field effects on order)  
  42.79.Kr (Display devices, liquid-crystal devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274088, 11374087, and11304074), the Natural Science Foundation of Hebei Province, China (Grant No. A2014202123), the Research Project of Hebei Provincial Education Department, China (Grant No. QN2014130), and the Key Subject Construction Project of Hebei Provincial University, China.
Corresponding Authors:  Guan Rong-Hua, Ye Wen-Jiang     E-mail:  ronghua_guan@163.com;wenjiang_ye@hebut.edu.cn

Cite this article: 

Guan Rong-Hua, Ye Wen-Jiang, Xing Hong-Yu Influences of surface and flexoelectric polarization on the effective anchoring energy in nematic liquid crystal 2015 Chin. Phys. B 24 106102

[1] De Gennes P G and Prost J 1993 The Physics of Liquid Crystals (Oxford: Oxford University Press) p. 108
[2] Sonin A A 1995 The Surface Physics of Liquid Crystals (New York: Gordon and Breach Press) p. 50
[3] Jerome B 1991 Rep. Prog. Phys. 54 391
[4] Yang G C, Zhang S J, Han L J and Guan R H 2004 Liq. Cryst. 31 1093
[5] Nazarenko V G and Lavrentovich O D 1994 Phys. Rev. E 49 990
[6] Zakharov A V and Dong R Y 2001 Phys. Rev. E 64 042701
[7] Yang G C, Guan R H and An H L 2003 Liq. Cryst. 30 997
[8] Barbero G and Durand G 1990 J. Appl. Phys. 67 2678
[9] Alexe-Ionescu A L, Barbero G and Petrov A G 1993 Phys. Rev. E 48 R1631
[10] Roland Meister and Blandine 1999 J. Appl. Phys. 86 2473
[11] Barbero G, Olivero D, Scaramuzza N, Strangi G and Versace C 2004 Phys. Rev. E 69 021713
[12] Liu J W, Zhang S H and Yang G C 2007 Liq. Cryst. 34 1425
[13] Guan R H 2010 Key Engineering Materials 428-429 251
[14] Guan R H 2011 Acta Phys. Sin. 60 016105(in Chinese)
[15] Meyer R B 1969 Phys. Rev. Lett. 22 918
[16] Petrov A G and Derzhanski A 1977 Mol. Cryst. Liq. Cryst. 41 41
[17] Barbero G, Dozov I, Palierne J F and Durand G 1986 Phys. Rev. Lett. 56 2056
[18] Ye W J, Xing H Y, Yang G C and Yuan M Y 2009 Chin. Phys. B 18 238
[19] Rapini A and Papoular M 1969 J. Phys. (Paris) Colloq. 30 C4-54
[20] Harden J, Mbanga B, Éber N, Fodor-Csorba., Sprunt S, Gleeson J T and Jákli A 2006 Phys. Rev. Lett. 97 157802
[21] Salter P S, Tschierske C, Elston S J and Raynes E P 2011 Phys. Rev. E 84 031708
[22] Outrama B I and Elstona S J 2012 Liq. Cryst. 39 149
[23] Xing H Y, Ye W J, Cai M L, Liu X M, Zhang Z D and Xuan L 2015 Acta Opt. Sin. 35 0323002(in Chinese)
[24] Ye W J, Xing H Y, Cui W J, Zhou X Sun Y B and Zhang Z D 2014 Chin. Phys. B 23 116101
[25] Castles F, Morris S M and Coles H J 2011 AIP Adv. 1 032120
[26] Castles F, Morris S M and Coles H J 2013 AIP Adv. 3 019102
[27] Blinov L M, Barnik M I, Ozaki M. Shtykov N M and Yoshino K 2000 Phys. Rev. E 62 8091
[1] Negative bias-induced threshold voltage instability and zener/interface trapping mechanism in GaN-based MIS-HEMTs
Qing Zhu(朱青), Xiao-Hua Ma(马晓华), Yi-Lin Chen(陈怡霖), Bin Hou(侯斌), Jie-Jie Zhu(祝杰杰), Meng Zhang(张濛), Mei Wu(武玫), Ling Yang(杨凌), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047304.
[2] High-performance InAlGaN/GaN enhancement-mode MOS-HEMTs grown by pulsed metal organic chemical vapor deposition
Ya-Chao Zhang(张雅超), Zhi-Zhe Wang(王之哲), Rui Guo(郭蕊), Ge Liu(刘鸽), Wei-Min Bao(包为民), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(1): 018102.
[3] Investigation and active suppression of self-heating induced degradation in amorphous InGaZnO thin film transistors
Dong Zhang(张东), Chenfei Wu(武辰飞), Weizong Xu(徐尉宗), Fangfang Ren(任芳芳), Dong Zhou(周东), Peng Yu(于芃), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(1): 017303.
[4] Characteristics and threshold voltage model of GaN-based FinFET with recessed gate
Chong Wang(王冲), Xin Wang(王鑫), Xue-Feng Zheng(郑雪峰), Yun Wang(王允), Yun-Long He(何云龙), Ye Tian(田野), Qing He(何晴), Ji Wu(吴忌), Wei Mao(毛维), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2018, 27(9): 097308.
[5] An analytical model for nanowire junctionless SOI FinFETs with considering three-dimensional coupling effect
Fan-Yu Liu(刘凡宇), Heng-Zhu Liu(刘衡竹), Bi-Wei Liu(刘必慰), Yu-Feng Guo(郭宇峰). Chin. Phys. B, 2016, 25(4): 047305.
[6] Two-dimensional models of threshold voltage andsubthreshold current for symmetrical double-material double-gate strained Si MOSFETs
Yan-hui Xin(辛艳辉), Sheng Yuan(袁胜), Ming-tang Liu(刘明堂),Hong-xia Liu(刘红侠), He-cai Yuan(袁合才). Chin. Phys. B, 2016, 25(3): 038502.
[7] Analytical threshold voltage model for strained silicon GAA-TFET
Hai-Yan Kang(康海燕), Hui-Yong Hu(胡辉勇), Bin Wang(王斌). Chin. Phys. B, 2016, 25(11): 118501.
[8] A two-dimensional analytical modeling for channel potential and threshold voltage of short channel triple material symmetrical gate Stack (TMGS) DG-MOSFET
Shweta Tripathi. Chin. Phys. B, 2016, 25(10): 108503.
[9] Threshold switching uniformity in In2Se3 nanowire-based phase change memory
Chen Jian, Du Gang, Liu Xiao-Yan. Chin. Phys. B, 2015, 24(5): 057702.
[10] Influences of fringing capacitance on threshold voltage and subthreshold swing of a GeOI metal-oxide-semiconductor field-effect transistor
Fan Min-Min, Xu Jing-Ping, Liu Lu, Bai Yu-Rong, Huang Yong. Chin. Phys. B, 2015, 24(3): 037303.
[11] Determining the sum of flexoelectric coefficients in nematic liquid crystals by the capacitance method
Ye Wen-Jiang, Xing Hong-Yu, Cui Wen-Jing, Zhou Xuan, Sun Yu-Bao, Zhang Zhi-Dong. Chin. Phys. B, 2014, 23(11): 116101.
[12] A two-dimensional analytical model for channel potential and threshold voltage of short channel dual material gate lightly doped drain MOSFET
Shweta Tripathi. Chin. Phys. B, 2014, 23(11): 118505.
[13] Directly extracting both threshold voltage and series resistance from conductance-voltage curve for AlGaN/GaN Schottky diode
Lü Yuan-Jie, Feng Zhi-Hong, Gu Guo-Dong, Dun Shao-Bo, Yin Jia-Yun, Han Ting-Ting, Sheng Bai-Cheng, Cai Shu-Jun, Liu Bo, Lin Zhao-Jun. Chin. Phys. B, 2013, 22(7): 077102.
[14] Effect of substrate doping on the flatband and threshold voltages of strained-Si pMOSFET
Wang Bin, Zhang He-Ming, Hu Hui-Yong, Zhang Yu-Ming, Zhou Chun-Yu, Wang Guan-Yu, Li Yu-Chen. Chin. Phys. B, 2013, 22(2): 028503.
[15] A threshold voltage analytical model for high-k gate dielectric MOSFETs with fully overlapped lightly doped drain structures
Ma Fei,Liu Hong-Xia,Kuang Qian-Wei,Fan Ji-Bin. Chin. Phys. B, 2012, 21(5): 057304.
No Suggested Reading articles found!