Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 087203    DOI: 10.1088/1674-1056/23/8/087203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Synthesis and electrical conductivity of nanocrystalline tetragonal FeS

Zeng Shu-Lin (曾树林)a b, Wang Hui-Xian (王辉宪)a, Dong Cheng (董成)b
a Hunan Agricultural University, Changsha 410128, China;
b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  A convenient method for synthesis of tetragonal FeS using iron powder as iron source, is reported. Nanocrystalline tetragonal FeS samples were successfully synthesized by reacting metallic iron powder with sodium sulfide in acetate buffer solution. The obtained sample is single-phase tetragonal FeS with lattice parameters a = 0.3767 nm and c =0.5037 nm, as revealed by X-ray diffraction. The sample consists of flat nanosheets with lateral dimensions from 20 nm up to 200 nm and average thickness of about 20 nm. We found that tetragonal FeS is a fairly good conductor from the electrical resistivity measurement on a pellet of the nanosheets. The temperature dependence of conductivity of the pellet was well fitted using an empirical equation wherein the effect of different grain boundaries was taken into consideration. This study provides a convenient, economic way to synthesize tetragonal FeS in a large scale and reports the first electrical conductivity data for tetragonal FeS down to liquid helium temperature.
Keywords:  tetragonal FeS      synthesis method      electrical conductivity      grain boundary  
Received:  25 April 2014      Revised:  29 May 2014      Accepted manuscript online: 
PACS:  72.15.Eb (Electrical and thermal conduction in crystalline metals and alloys)  
  73.63.Bd (Nanocrystalline materials)  
  81.07.Bc (Nanocrystalline materials)  
  81.20.Ka (Chemical synthesis; combustion synthesis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21271183) and the National Basic Research Program of China (Grant Nos. 2011CBA00112 and 2011CB808202).
Corresponding Authors:  Dong Cheng     E-mail:  chengdon@aphy.iphy.ac.cn

Cite this article: 

Zeng Shu-Lin (曾树林), Wang Hui-Xian (王辉宪), Dong Cheng (董成) Synthesis and electrical conductivity of nanocrystalline tetragonal FeS 2014 Chin. Phys. B 23 087203

[1] Lennie A R, Redfern S A T, Schofield P F and Vaughan D J 1995 Mineral Mag. 59 677
[2] Uda M 1968 Z. Anorg. Allg. Chem. 361 94
[3] Rickard D and Luther G W 2007 Chem. Rev. 107 514
[4] Hu Y, Zheng Z, Jia H M, Tang Y W and Zhang L Z 2008 J. Phys. Chem. C 112 13037
[5] Nakamura R, Okamoto A, Tajima N, Newton G J, Kai F, Takashima T and Hashimoto K 2010 Chembiochem 11 643
[6] Farquhar M L, Charnock J M, Livens F R and Vaughan D J 2002 Environ. Sci. Technol. 36 1757
[7] Jeong H Y, Klaue B, Blum J D and Hayes K F 2007 Environ. Sci. Technol. 41 7699
[8] Watson J H P, Cressey B A, Roberts A P, Ellwood D C, Charnock J M and Soper A K 2000 J. Magn. Magn. Mater. 214 13
[9] Patterson R R, Fendorf S and Fendorf M 1997 Environ. Sci. Technol. 31 2039-44
[10] Jeong H Y and Hayes K F 2007 Environ. Sci. Technol. 41 6390
[11] Jeong H Y, Kim H and Hayes K F 2007 Environ. Sci. Technol. 41 7736
[12] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
[13] Wilson J A 2010 J. Phys.: Condens. Matter 22 203201
[14] Devey A J, Grau-Crespo R and De Leeuw N H 2008 J. Phys. Chem. C 112 10960
[15] Subedi A, Zhang L J, Singh D J and Du M H 2008 Phys. Rev. B 78 134514
[16] Kwon K D, Refson K, Bone S, Qiao R M, Yang W L, Liu Z and Sposito G 2011 Phys. Rev. B 83 064402
[17] Pearce C I, Pattrick R A D and Vaughan D J 2006 Rev. Mineral Geochem. 61 127
[18] Bertaut E F, Burlet P and Chappert J 1965 Solid State Commun. 3 335
[19] Vaughan D J and Ridout M S 1971 J. Inorg. Nucl. Chem. 33 741
[20] Boursiquot S, Mullet M, Abdelmoula M, Genin J M and Ehrhardt J J 2001 Phys. Chem. Miner. 28 600
[21] Lennie A R, Redfern S A T, Champness P E, Stoddart C P, Schofield P F and Vaughan D J 1997 Am. Mineral 82 302
[22] Lennie A R, England K E R and Vaughan D J 1995 Am. Mineral 80 960
[23] Hunger S and Benning L G 2007 Geochem. Trans. 8 1
[24] Wilkin R T and Barnes H L 1996 Geochim. Cosmochim. Acta 60 4167
[25] Berner R A 1964 Journal of Geology 72 293
[26] Gramp J P, Bigham J M, Jones F S and Tuovinen O H 2010 J. Hazard Mater. 175 1062
[27] Bezdicka P, Grenier J C, Fournes L, Wattiaux A and Hagenmuller P 1989 Eur. J. Solid State Inorg. Chem. 26 353
[28] Gomes A, Pereira M I D, Mendonca M H and Costa F M 2002 Solid State Sci. 4 1083
[29] Mullet M, Boursiquot S, Abdelmoula M, Genin J M and Ehrhardt J J 2002 Geochim. Cosmochim. Acta 66 829
[30] Wolthers M, Van Der Gaast S J and Rickard D 2003 Am. Mineral 88 2007
[31] Csakberenyi-Malasics D, Rodriguez-Blanco J D, Kis V K, Recnik A, Benning L G and Posfai M 2012 Chem. Geol. 294 249
[32] Ohfuji H and Rickard D 2006 Earth Planet. Sci. Lett. 241 227
[33] Sines I T, Vaughn D D, Misra R, Popczun E J and Schaak R E 2012 J. Solid State Chem. 196 17
[34] Dong C 1999 J. Appl. Crystallogr. 32 838
[35] Kaye G W C and Laby T H 1995 Tables of Physical and Chemical Constants (Beijing: Longman) p. 152
[36] Edman L, Sundqvist B, Mcrae E and Litvin-Staszewska E 1998 Phys. Rev. B 57 6227
[37] Efros A and Shklovskii B 1984 Springer Series in Solid-State Sciences (Berlin: Springer) 45 pp. 74-93
[38] Sheng P, Abeles B and Arie Y 1973 Phys. Rev. Lett. 31 44
[39] Mott N 1969 Philos. Mag. 19 835
[40] Werner J 1994 Solid State Phenom. 37 213
[41] Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M and Chen X 2010 Phys. Rev. B 82 180520
[1] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[2] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[3] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[4] Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2022, 31(12): 128105.
[5] Barrier or easy-flow channel: The role of grain boundary acting on vortex motion in type-II superconductors
Yu Liu(刘宇), Xiao-Fan Gou(苟晓凡), and Feng Xue(薛峰). Chin. Phys. B, 2021, 30(9): 097402.
[6] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[7] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[8] Grain boundary effect on structural, optical, and electrical properties of sol-gel synthesized Fe-doped SnO2 nanoparticles
Archana V, Lakshmi Mohan, Kathirvel P, and Saravanakumar S. Chin. Phys. B, 2021, 30(4): 048202.
[9] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[10] 57Fe Mössbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE-Fe-B permanent magnets
Lizhong Zhao(赵利忠), Xuefeng Zhang(张雪峰), Mi Yan(严密), Zhongwu Liu(刘仲武), and Jean-Marc Greneche. Chin. Phys. B, 2021, 30(1): 013302.
[11] Effect of grain boundary energy anisotropy on grain growth in ZK60 alloy using a 3D phase-field modeling
Yu-Hao Song(宋宇豪), Ming-Tao Wang(王明涛), Jia Ni(倪佳), Jian-Feng Jin(金剑锋), and Ya-Ping Zong(宗亚平). Chin. Phys. B, 2020, 29(12): 128201.
[12] Electronic and thermoelectric properties of alkali metal-based perovskites CsYbF3 and RbYbF3
Q Mahmood, N A Noor, T Ghrib, Nessrin A Kattan, Asif Mahmood, and Shahid M Ramay. Chin. Phys. B, 2020, 29(11): 117305.
[13] Nucleation and growth of helium bubble at (110) twist grain boundaries in tungsten studied by molecular dynamics
Fang-Biao Li(李芳镖), Guang Ran(冉广), Ning Gao(高宁), Shang-Quan Zhao(赵尚泉), Ning Li(李宁). Chin. Phys. B, 2019, 28(8): 085203.
[14] Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets
Mi Yan(严密), Jiaying Jin(金佳莹), Tianyu Ma(马天宇). Chin. Phys. B, 2019, 28(7): 077507.
[15] Shock-induced migration of asymmetry tilt grain boundary in iron bicrystal: A case study of Σ3 [110]
Xueyang Zhang(张学阳), Kun Wang(王昆), Jun Chen(陈军), Wangyu Hu(胡望宇), Wenjun Zhu(祝文军), Shifang Xiao(肖时芳), Huiqiu Deng(邓辉球), Mengqiu Cai(蔡孟秋). Chin. Phys. B, 2019, 28(12): 126201.
No Suggested Reading articles found!