Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 087202    DOI: 10.1088/1674-1056/23/8/087202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Valley selection rule in a Y-shaped zigzag graphene nanoribbon junction

Zhang Lin (张林)a, Wang Jun (汪军)b
a Department of Applied Physics, College of Science, Nanjing Forestry University, Nanjing 210037, China;
b Department of Physics, Southeast University, Nanjing 210096, China
Abstract  The valley valve effect was predicted in a straight zigzag graphene nanoribbon (ZGR) p/n junction. In this work, we address a possible valley selection rule in a Y-shaped ZGR junction. By modeling the system as a three-terminal device and calculating the conductance spectrum, we found that the valley valve effect could be preserved in the system and the Y-shaped connection does not mix the valley index or the pseudoparities of quasiparticles. It is also shown that the Y-shaped ZGR device can be used to separate spins in real space according to the unchanged valley valve effect. Our finding might pave a way to manipulate and detect spins in a multi-terminal graphene-based spin device.
Keywords:  valley selection rule      zigzag graphene nanoribbon      pseudoparity      conductance  
Received:  15 November 2013      Revised:  14 February 2014      Accepted manuscript online: 
PACS:  72.25.Dc (Spin polarized transport in semiconductors)  
  72.80.Vp (Electronic transport in graphene)  
  72.25.Mk (Spin transport through interfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 110704033), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010416), and the Natural Science Foundation for Colleges and Universities in Jiangsu Province, China (Grant No. 13KJB140005).
Corresponding Authors:  Zhang Lin     E-mail:  lzhang2011@gmail.com

Cite this article: 

Zhang Lin (张林), Wang Jun (汪军) Valley selection rule in a Y-shaped zigzag graphene nanoribbon junction 2014 Chin. Phys. B 23 087202

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[3] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Munoz-Rojas F, Fernandez-Rossier J and Palacios J J 2009 Phys. Rev. Lett. 102 136810
[5] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature 448 571
[6] Wang L and Wu M W 2013 Phys. Rev. B 87 205416
[7] Shishir R S and Ferry D K 2009 J. Phys.: Condens. Matter 21 232204
[8] Han W, Pi K, McCreary K M, Li Y, Wong J J I, Swartz A G and Kawakami P K 2010 Phys. Rev. Lett. 105 167202
[9] Kechedzhi K, Hwang E H and Das Sarma S 2012 Phys. Rev. B 86 165442
[10] Zhang Z H, Chen C F and Guo W L 2009 Phys. Rev. Lett. 103 187204
[11] Guo Y F, Guo W L and Chen C F 2010 J. Phys. Chem. C 114 13098
[12] Guo Y F and Guo W L 2012 J. Appl. Phys. 111 074317
[13] Dmitry A A, Lee Patrick A and Levitov S 2006 Phys. Rev. Lett. 96 176803
[14] Zhang Y T, Jiang H, Sun Q F and Xie X C 2010 Phys. Rev. B 81 165404
[15] Michetti P and Recher P 2011 Phys. Rev. B 84 125438
[16] Dell'Anna L and De Martino A 2009 Phys. Rev. B 80 155416
[17] Ding K H, Zhu Z G and Berakdar J 2011 Phys. Rev. B 84 115433
[18] Wang Z F, Jin S and Liu F 2013 Phys. Rev. Lett. 111 096803
[19] Zhang L 2013 J. Phys.: Condens. Matter 25 035303
[20] Valenzuela Sergio O 2009 Int. J. Mod. Phys. B 23 2413
[21] Wang J, Tian H Y, Yang Y H and Chan K S 2012 Phys. Rev. B 86 081404
[22] McCreary K M, Swartz A G, Han W, Fabian J and Kawakami R K 2012 Phys. Rev. Lett. 109 186604
[23] Vera-Marun I J, Ranjan V and van Wees B J 2012 Nat. Phys. 8 313
[24] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[25] Akhmerov A R, Bardarson J H, Rycerz A and Beenakker C W J 2008 Phys. Rev. B 77 205416
[26] Cresti A, Grosso G and Parravicini G P 2008 Phys. Rev. B 77 233402
[27] Nakabayashi J, Yamamoto D and Kurihara S 2009 Phys. Rev. Lett. 102 066803
[28] Xing Y X, Wang J and Sun Q F 2011 Phys. Rev. B 83 205418
[29] Tian H Y and Wang J 2012 Chin. Phys. B 21 017203
[30] Wang J, Zhang L and Chan K S 2011 Phys. Rev. B 83 125425
[31] Pisani L, Chan J A, Montanari B and Harrison N M 2007 Phys. Rev. B 75 064418
[32] Datta S 1995 Electronic Transport in Mesoscopic Systems, 2nd edn. (Cambridge: Cambridge University Press) p. 102
[33] Maher M Kh, Shahtahmassebi N and Roknabadi M R 2013 Physica E 54 93
[34] Li T C and Lu S P 2008 Phys. Rev. B 77 085408
[35] Libisch F, Rotter S and Burgdörfer J 2012 New J. Phys. 14 123006
[1] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[2] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[3] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[4] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[5] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[6] Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature
Yu Fu(付裕), Rui-Min Xu(徐锐敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Tang-Sheng Chen(陈堂胜), Bo Yan(延波), Yan-Rong Li(李言荣), Zheng-Qiang Ma(马正强), and Yue-Hang Xu(徐跃杭). Chin. Phys. B, 2021, 30(5): 058101.
[7] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[8] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[9] Negative transconductance effect in p-GaN gate AlGaN/GaN HEMTs by traps in unintentionally doped GaN buffer layer
Mei Ge(葛梅), Qing Cai(蔡青), Bao-Hua Zhang(张保花), Dun-Jun Chen(陈敦军), Li-Qun Hu(胡立群), Jun-Jun Xue(薛俊俊), Hai Lu(陆海), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2019, 28(10): 107301.
[10] Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in siliconjunctionless nanowire transistors
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Ya-Mei Dou(窦亚梅), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(10): 107303.
[11] Semi-analytic study on the conductance of a lengthy armchair honeycomb nanoribbon including vacancies, defects, or impurities
Fateme Nadri, Mohammad Mardaani, Hassan Rabani. Chin. Phys. B, 2019, 28(1): 017202.
[12] Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction
Lin Zhang(张林). Chin. Phys. B, 2018, 27(6): 067203.
[13] Thermal properties of transition-metal dichalcogenide
Xiangjun Liu(刘向军), Yong-Wei Zhang(张永伟). Chin. Phys. B, 2018, 27(3): 034402.
[14] General theories and features of interfacial thermal transport
Hangbo Zhou(周杭波), Gang Zhang(张刚). Chin. Phys. B, 2018, 27(3): 034401.
[15] Gas-sensor property of single-molecule device: F2 adsorbing effect
Zong-Liang Li(李宗良), Jun-Jie Bi(毕俊杰), Ran Liu(刘然), Xiao-Hua Yi(衣晓华), Huan-Yan Fu(傅焕俨), Feng Sun(孙峰), Ming-Zhi Wei(魏明志), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2017, 26(9): 098508.
No Suggested Reading articles found!