Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 048202    DOI: 10.1088/1674-1056/23/4/048202
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Crystal structure and ionic conductivity of Mg-doped apatite-type lanthanum silicates La10Si6-xMgxO27-x(x=0-0.4

Yin Guang-Chao, Yin Hong, Zhong Lin-Hong, Sun Mei-Ling, Zhang Jun-Kai, Xie Xiao-Jun, Cong Ri-Dong, Wang Xin, Gao Wei, Cui Qi-Liang
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  Lanthanum silicates La10Si6-xMgxO27-x (x= 0-0.4) were prepared by solid state synthesis to investigate the effect of Mg doping on crystal structure and ionic conductivity. Rietveld analysis of the powder XRD patterns reveals that Mg substitution on Si site results in significant enlargement of channel triangles, favoring oxide-ion conduction. Furthermore, an increase of Mg concentration significantly influences the linear density of interstitial oxygen, which plays an important role in ionic conductivity. The Arrhenius plots of La10Si6-xMgxO27-x (x=0-0.4) suggest that Mg-doped samples present higher conductivity and lower activation energy than non-doped La10Si6O27, and La10Si5.8Mg0.2O26.8 exhibits the highest conductivity with a value of 3.0× 10-2 S ·cm-1 at 700 ℃. Such conductive behavior agrees well with the refined results. The corresponding mechanism has been discussed in this paper.
Keywords:  solid oxide fuel cells      electrolyte      ionic conduction  
Received:  08 August 2013      Revised:  22 October 2013      Accepted manuscript online: 
PACS:  82.47.Ed (Solid-oxide fuel cells (SOFC))  
  82.45.Gj (Electrolytes)  
  66.30.Dn (Theory of diffusion and ionic conduction in solids)  
Fund: Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.
Corresponding Authors:  Gao Wei     E-mail:  gwei@jlu.edu.cn
About author:  82.47.Ed; 82.45.Gj; 66.30.Dn

Cite this article: 

Yin Guang-Chao, Yin Hong, Zhong Lin-Hong, Sun Mei-Ling, Zhang Jun-Kai, Xie Xiao-Jun, Cong Ri-Dong, Wang Xin, Gao Wei, Cui Qi-Liang Crystal structure and ionic conductivity of Mg-doped apatite-type lanthanum silicates La10Si6-xMgxO27-x(x=0-0.4 2014 Chin. Phys. B 23 048202

[1] Santos M, Alves C, Oliveira F A C, Marcelo T, Mascarenhas J, Cavaleiro A and Trindade B 2013 Journal of Power Sources 231 146
[2] Liu W, Yamaguchi S, Tsuchiya T, Miyoshi S, Kobayashi K and Pan W 2013 Journal of Power Sources 235 62
[3] Fukuda K, Asaka T, Okino M, Berghout A, Béchade E, Masson O, Julien I and Thomas P 2012 Solid State Ionics 217 40
[4] Matsui T, Mineshige A, Funahashi T, Mieda H, Daiko Y, Kobune M, Yoshioka H and Yazawa T 2012 Journal of Power Sources 217 170
[5] Gao W, Li W Y, Liao H L and Coddet C 2011 Journal of Thermal Pray Technology 20 888
[6] Gasparyan H, Neophytides S, Niakolas D, Stathopoulos V, Kharlamova T, Sadykov V, Van der Biest O, Jothinathan E, Louradour E, Joulin J P and Bebelis S 2011 Solid State Ionics 192 158
[7] Malavasi L, Fisher C A J and Islam M S 2010 Chem. Soc. Rev. 39 4370
[8] Marrero-López D, Martín-Sedeño M C, Ruiz-Morales J C, Núñez P, Aranda M A G and Ramos-Barrado J R 2010 Journal of Power Sources 195 2496
[9] Yang S D, Shen C M, Tong H, He W, Zhang X G and Gao H J 2011 Chin. Phys. B 20 113301
[10] Ding H, Shi X Z, Shen C M, Hui C, Xu Z C, Li C, Tian Y, Wang D K and Gao H J 2010 Chin. Phys. B 19 106104
[11] Kendrick E, Headspith D, Orera A, Apperley D C, Smith R I, Francesconi M G and Slater P R 2009 J. Mater. Chem. 19 749
[12] Mineshige A, Nakao T, Kobune M, Yazawa T and Yoshioka H 2008 Solid State Ionics 179 1009
[13] Gao W, Liao H L and Coddet C 2008 Journal of Power Sources 179 739
[14] Tolchard J R, Slater P R and Islam M S 2007 Adv. Funct. Mater. 17 2564
[15] Yoshioka H 2006 J. Alloys Compd. 408 649
[16] Okudera H, Masubuch Y, Kikkawa S and Yoshiasa A 2005 Solid State Ionics 176 1473
[17] Nakayama S, Kageyama T, Aono H and Sadaoka Y 1995 J. Mater. Chem. 5 1801
[18] Li B, Liu W and Pan W 2010 J. Power Sources 195 2196
[19] Béchade E, Masson O, Iwata T, Julien I, Fukuda K, Thomas P and Champion E 2009 Chem. Mater. 21 2508
[20] Kendrick E, Islam M S and Slater P R 2007 J. Mater. Chem. 17 3104
[21] Fukuda K, Asaka T, Ishizawa N, Mino H, Urushihara D, Berghout A, Bechade E, Masson O, Julien I and Thomas P 2012 Chem. Mater. 24 2611
[22] Shi Q L, Lu L H, Jin H J, Zhang H and Zeng Y W 2012 Mater. Res. Bull. 47 719
[23] Nallamuthu N, Prakash I, Satyanarayana N and Venkateswarlu M 2011 J. Alloys Compd. 509 1138
[24] Gasparyan H, Neophytides S, Niakolas D, Stathopoilos V, Kharlamova T, Sadykov V, Van der Biest O, Jothinathan E, Louradour E, Joulin J P and Bebelis S 2011 Solid State Ionics 192 158
[25] Jothinathan E, Vanmeensel K, Vleuggels J and Van der Biest O 2010 J. Alloys Compd. 495 552
[26] Dru S, Meillot E, Wittmann-Teneze K, Benoit R and Saboungi M L 2010 Surface & Coatings Technology 205 1060
[27] Jiang S P, Zhang L, He H Q, Yap R K and Xiang Y 2009 J. Power Sources 189 972
[28] Kharlamova T, Pavlova S, Sadykov V, Krieger T, Batuev L, Muzykantov V, Uvarov N and Argirusis C 2009 Solid State Ionics 180 796
[29] Chefi S, Madami A, Boussetta H, Roux C and Hammou A 2008 Journal of Power Sources 177 464
[30] Kendrick E, Sansom J E H, Tolchard J R, Islam M S and Slater P R 2007 Faraday Discussions 134 181
[31] Yoshioka H, Nojiri Y and Tanase S 2008 Solid State Ionics 179 2165
[32] Yoshioka H 2007 J. Am. Ceram. Soc. 90 3099
[33] Kinoshita T, Iwata T, Bechade E, Masson O, Julien I, Champion E, Thomas H, Yoshida H, Ishizawa N and Fukuda K 2010 Solid State Ionics 181 1024
[34] Sansom J E H, Kendrick E, Islam M S and Slater P R 2006 J. Solid State Electrochem. 10 562
[35] Yoshioka H and Tanase S 2005 Solid State Ionics 176 2395
[36] Ali R, Yashima M, Matsushita Y, Yoshioka H and Izumi F 2009 J. Solid State Chem. 182 2846
[37] Nojiri Y, Tanase S, Iwasa M, Yoshioka H, Matsumura Y and Sakai T 2010 J. Power Sources 195 4059
[38] Guo C J, Cai T X, Zhang W, Tian C G and Zeng Y W 2010 Mater. Sci. Eng. B 171 50
[39] Kendrick E and Slater P R 2008 Solid State Ionics 179 981
[40] Kendrick E and Slater P R 2008 Mater. Res. Bull. 43 3627
[1] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[2] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[3] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[4] A synaptic transistor with NdNiO3
Xiang Wang(汪翔), Chen Ge(葛琛), Ge Li(李格), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(9): 098101.
[5] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[6] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
[7] Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study
Jieyun Zheng(郑杰允), Jialiang Liu(刘家亮), Suijun Wang(王绥军), Fei Luo(罗飞), Liubin Ben(贲留斌), Hong Li(李泓). Chin. Phys. B, 2020, 29(4): 048203.
[8] Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries
Yuqi Li(李钰琦), Yaxiang Lu(陆雅翔), Liquan Chen(陈立泉), Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2020, 29(4): 048201.
[9] High-performance synaptic transistors for neuromorphic computing
Hai Zhong(钟海), Qin-Chao Sun(孙勤超), Guo Li(李果), Jian-Yu Du(杜剑宇), He-Yi Huang(黄河意), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Chen Ge(葛琛), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(4): 040703.
[10] Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal
Hang-Yu Xu(徐航宇), Quan Li(李泉), Hong-Yi Pan(潘弘毅), Ji-Liang Qiu(邱纪亮), Wen-Zhuo Cao(曹文卓), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(7): 078202.
[11] Improved electrochemical performance of Li(Ni0.6Co0.2Mn0.2)O2 at high charging cut-off voltage with Li1.4Al0.4Ti1.6(PO4)3 surface coating
Yi Wang(王怡), Bo-Nan Liu(刘柏男), Ge Zhou(周格), Kai-Hui Nie(聂凯会), Jie-Nan Zhang(张杰男), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(6): 068202.
[12] Structure, conductivity, and ion emission properties of RbAg4I5 solid electrolyte film prepared by pulsed laser deposition
Jun-Lian Chen(陈军联), Wen-Bin Zuo(左文彬), Xian-Wen Ke(柯贤文), Alexander B Tolstoguzov, Can-Xin Tian(田灿鑫), Neena Devi, Ranjana Jha, Gennady N Panin, De-Jun Fu(付德君). Chin. Phys. B, 2019, 28(6): 060705.
[13] Size effect of Si particles on the electrochemical performances of Si/C composite anodes
Bonan Liu(刘柏男), Hao Lu(陆浩), Geng Chu(褚赓), Fei Luo(罗飞), Jieyun Zheng(郑杰允), Shimou Chen(陈仕谋), Hong Li(李泓). Chin. Phys. B, 2018, 27(8): 088201.
[14] A high-performance rechargeable Li-O2 battery with quasi-solid-state electrolyte
Jia-Yue Peng(彭佳悦), Jie Huang(黄杰), Wen-Jun Li(李文俊), Yi Wang(王怡), Xiqian Yu(禹习谦), Yongsheng Hu(胡勇胜), Liquan Chen(陈立泉), Hong Li(李泓). Chin. Phys. B, 2018, 27(7): 078201.
[15] Tuning hybrid liquid/solid electrolytes by lowering Li salt concentration for lithium batteries
Wei Yang(杨伟), Qi-Di Wang(王启迪), Yu Lei(雷宇), Zi-Pei Wan(万子裴), Lei Qin(秦磊), Wei Yu(余唯), Ru-Liang Liu(刘如亮), Deng-Yun Zhai(翟登云), Hong Li(李泓), Bao-Hua Li(李宝华), Fei-Yu Kang(康飞宇). Chin. Phys. B, 2018, 27(6): 068201.
No Suggested Reading articles found!