Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047102    DOI: 10.1088/1674-1056/23/4/047102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Molecular dynamics simulations of jet breakup and ejecta production from a grooved Cu surface under shock loading

He An-Min, Wang Pei, Shao Jian-Li, Duan Su-Qing
Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
Abstract  Large-scale non-equilibrium molecular dynamics simulations are performed to explore the jet breakup and ejecta production of single crystal Cu with a triangular grooved surface defect under shock loading. The morphology of the jet breakup and ejecta formation is obtained where the ejecta clusters remain spherical after a long simulation time. The effects of shock strength as well as groove size on the steady size distribution of ejecta clusters are investigated. It is shown that the size distribution of ejecta exhibits a scaling power law independent of the simulated shock strengths and groove sizes. This distribution, which has been observed in many fragmentation processes, can be well described by percolation theory.
Keywords:  molecular dynamics      ejection  
Received:  29 August 2013      Revised:  29 September 2013      Accepted manuscript online: 
PACS:  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  62.50.+p  
Fund: Project supported by the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2013A0201010).
Corresponding Authors:  He An-Min     E-mail:  he_anmin@iapcm.ac.cn
About author:  71.15.Pd; 62.50.+p

Cite this article: 

He An-Min, Wang Pei, Shao Jian-Li, Duan Su-Qing Molecular dynamics simulations of jet breakup and ejecta production from a grooved Cu surface under shock loading 2014 Chin. Phys. B 23 047102

[1] Asay J R, Mix L P I and Perry F C 1976 Appl. Phys. Lett. 29 284
[2] Asay J R 1976 Material Ejection from Shock-Loaded Free Surfaces of Aluminum and Lead (Sandia Report) SAND-76-0542
[3] Asay J R and Bertholf L D 1978 A Model for Estimating the Effects of Surface Roughness on Mass Ejection from Shocked Materials (Sandia Report) SAND-78-1256
[4] Andriot P, Chapron P and Olive F 1981 AIP. Conf. Proc. 78 505
[5] Sorenson D S, Minich R W, Romerro J L, Tunnel T W and Malone R M 2002 J. Appl. Phys. 92 5830
[6] Vogan W S, Anderson W W, Grover M and Hammerberg J E, et al. 2005 J. Appl. Phys. 98 113508
[7] Zellner M B, Grover M and Hammerberg J E, et al. 2007 J. Appl. Phys. 102 13522
[8] Zellner M B, Grover M and Hammerberg J E, et al. 2008 J. Appl. Phys. 103 123502
[9] Zellner M B, Dimonte G and Germann T C, et al. 2008 AIP. Conf. Proc. 1195 1047
[10] Dimonte G, Terrones G, CHerne F J and Ramaprabhu P 2013 J. Appl. Phys. 113 024905
[11] Holian B L, Germann T C, Lomdahl P S and Ravelo R 1999 AIP. Conf. Proc. 505 35
[12] Chen Q F, Jing F Q, Zhang J L, Chen D Q and Wang J H 2002 J. Phys.: Condens. Matter 14 10833
[13] Germann T C, Hammerberg J E and Holian B L 1999 AIP. Conf. Proc. 706 285
[14] Chen Q F, Cao X L, Zhang Y, Cai L C and Chen D Q 2005 Chin. Phys. Lett. 22 3151
[15] Shao J L, Wang P, He A M and Qin C S 2012 Acta Phys. Sin. 61 148701 (in Chinese)
[16] Wang P, Shao J L and Qin C S 2009 Acta Phys. Sin. 58 1064 (in Chinese)
[17] Shao J L, Tang L and Wang P 2011 Procedia. Eng. 10 3322
[18] Shao J L, Wang P, He A M, Duan S Q and Qin C S 2013 J. Appl. Phys. 113 153501
[19] Durand O and Soulard L 2012 J. Appl. Phys. 111 044901
[20] Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F and Kress J D 2001 Phys. Rev. B 63 224106
[21] An Q, Luo S N, Han L B, Zheng L Q and Tschauner O 2008 J. Phys.: Condens. Matter 20 095220
[22] He A M, Duan S Q, Shao J L, Wang P and Qin C S 2012 J. Appl. Phys. 112 074116
[23] He A M, Duan S Q, Shao J L, Wang P and Qin C S 2012 J. Appl. Phys. 112 103516
[24] Bontaz-Carion J and Pellegrini Y 2006 Adv. Eng. Mater. 8 480
[25] Xie Y, Han L B, An Q, Zheng L Q and Luo S N 2009 J. Appl. Phys. 105 066103
[26] Werdiger M, Arad B and Hens Z 1996 Laser and Particle Beams 14 133
[27] Yuan Q Z and Zhao Y P 2012 Proc. R. Soc. A 468 310
[1] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[2] Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清). Chin. Phys. B, 2021, 30(6): 068701.
[3] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[4] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[5] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[6] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[7] Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective
Jiting Tian(田继挺). Chin. Phys. B, 2021, 30(2): 026102.
[8] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[9] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[10] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[11] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[12] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[13] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[14] High common mode rejection ratio InP 90° optical hybrid in ultra-broadband at 60 nm with deep-rigded waveguide based on ×4 MMI coupler
Zi-Qing Lu(陆子晴), Qin Han(韩勤), Han Ye(叶焓), Shuai Wang(王帅), Feng Xiao(肖峰), Fan Xiao(肖帆). Chin. Phys. B, 2020, 29(5): 054206.
[15] Nearly golden-ratio order in Ta metallic glass
Yuan-Qi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2020, 29(4): 046105.
No Suggested Reading articles found!