Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 040302    DOI: 10.1088/1674-1056/23/4/040302
GENERAL Prev   Next  

Nonlocal non-Markovian effects in dephasing environments

Xie Dong, Wang An-Min
Department of Modern Physics, University of Science and Technology of China, Hefei 230027, China
Abstract  We study the nonlocal non-Markovian effects through local interactions between two subsystems and the corresponding two environments. It has been found that the initial correlations between two environments can turn a Markovian to a non-Markovian regime with extra control on the local interaction time. We further research the nonlocal non-Markovian effects from two situations: without extra control, the nonlocal non-Markovian effects only appear under the condition that two local dynamics are non-Markovian-non-Markovian (both of the two local dynamics are non-Markovian) or Markovian-non-Markovian, but not under the condition of Markovian-Markovian; with extra control, the nonlocal non-Markovian effects can occur under the condition of Markovian-Markovian. It shows that the function of correlations between two environments has an upper bound, which makes a flow of information from the environment back to the global system beginning finitely earlier than that back to one of the two local systems, not infinitely. Then, we proposed two special ways to distribute classical correlations between two environments without initial correlations. Finally, from numerical solutions in the spin star configuration, we found that the self-correlation (internal correlation) of each environment promotes the nonlocal non-Markovian effects.
Keywords:  non-Markovian      Markovian      nonlocal      bound  
Received:  29 May 2013      Revised:  29 August 2013      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.-p (Quantum optics)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10975125 and 11375168).
Corresponding Authors:  Xie Dong, Wang An-Min     E-mail:;
About author:  03.67.-a; 03.65.Yz; 42.50.-p; 03.65.Ta

Cite this article: 

Xie Dong, Wang An-Min Nonlocal non-Markovian effects in dephasing environments 2014 Chin. Phys. B 23 040302

[1] Spohn H 1980 Rev. Mod. Phys. 52 569
[2] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[3] Akihito I and Fleming G R 2009 J. Chem. Phys. 130 234110
[4] Akihito I and Fleming G R 2009 J. Chem. Phys. 130 234111
[5] Bellomo B, Franco R L and Compagno G 2007 Phys. Rev. Lett. 99 160502
[6] Sarovar M, Ishizaki A, Fleming G R and Whaley K B 2010 Nat. Phys. 6 462
[7] Dijkstra A G and Tanimura Y 2010 Phys. Rev. Lett. 104 250401
[8] Liao J Q, Huang J F, Kuang L M and Sun C P 2010 Phys. Rev. A 82 052109
[9] Imamoglu A 1994 Phys. Rev. A 50 3650
[10] Wang X Y, Ding B F and Zhao H P 2013 Chin. Phys. B 22 040308
[11] Ding B F, Wang X Y, Tang Y F, Mi X W and Zhao H P 2011 Chin. Phys. B 20 060304
[12] Huelga S F, Rivas Á and Plenio M B 2012 Phys. Rev. Lett. 108 160402
[13] Xue S B, Wu R B, Zhang W M, Zhang J, Li C W and Tarn T J 2012 Phys. Rev. A 86 052304
[14] Guérin T, Bénichou O and Voituriez R 2012 Nat. Chem. 4 568
[15] Hoeppe U, Wolff C, Kuchenmeister J, Niegemann J, Drescher M, Benner H and Busch K 2012 Phys. Rev. Lett. 108 043603
[16] Madsen K H, Ates S, Lund-Hansen T, Löffler A, Reitzenstein S, Forchel A and Lodahl P 2011 Phys. Rev. Lett. 106 233601
[17] Laine E M, Breuer H P, Piilo J, Li C F and Guo G C 2012 Phys. Rev. Lett. 108 210402
[18] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (New York: Oxford University Press)
[19] Leggett A J, Chakravarty S, Dorsey A, Fisher M, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
[20] Weiss U 2008 Quantum Dissipative Systems (Singapore: World Scientific)
[21] Breuer H P, Burgarth D and Petruccione F 2004 Phys. Rev. B 70 045323
[22] Wolf M M, Eisert J, Cubitt T S and Cirac J I 2008 Phys. Rev. Lett. 101 150402
[23] Clos G and Breuer H P 2012 Phys. Rev. A 86 012115
[24] Rivas Á, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
[25] Luo S, Fu S and Song H 2012 Phys. Rev. A 86 044101
[26] Sangouard N, Simon C, Riedmatten H D and Gisin N 2011 Rev. Mod. Phys. 83 33
[27] Paz-Silva G A, Rezakhani A T, Dominy J M and Lidar D A 2012 Phys. Rev. Lett. 108 080501
[1] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[2] Improved nonlinear parabolized stability equations approach for hypersonic boundary layers
Shaoxian Ma(马绍贤), Yi Duan(段毅), Zhangfeng Huang(黄章峰), and Shiyong Yao(姚世勇). Chin. Phys. B, 2021, 30(5): 054701.
[3] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
[4] Grain boundary effect on structural, optical, and electrical properties of sol-gel synthesized Fe-doped SnO2 nanoparticles
Archana V, Lakshmi Mohan, Kathirvel P, and Saravanakumar S. Chin. Phys. B, 2021, 30(4): 048202.
[5] Axial acoustic radiation force on an elastic spherical shell near an impedance boundary for zero-order quasi-Bessel-Gauss beam
Yu-Chen Zang(臧雨宸), Wei-Jun Lin(林伟军), Chang Su(苏畅), and Peng-Fei Wu(吴鹏飞). Chin. Phys. B, 2021, 30(4): 044301.
[6] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[7] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[8] Influence of uniform momentum zones on frictional drag within the turbulent boundary layer
Kangjun Wang(王康俊) and Nan Jiang(姜楠). Chin. Phys. B, 2021, 30(3): 034703.
[9] Model predictive inverse method for recovering boundary conditions of two-dimensional ablation
Guang-Jun Wang(王广军), Ze-Hong Chen(陈泽弘), Guang-Xiang Zhang(章广祥), and Hong Chen(陈红). Chin. Phys. B, 2021, 30(3): 030203.
[10] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[11] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[12] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
[13] Coherent-driving-assisted quantum speedup in Markovian channels
Xiang Lu(鹿翔), Ying-Jie Zhang(张英杰), and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(2): 020301.
[14] Propagation properties and radiation force of circular Airy Gaussian vortex beams in strongly nonlocal nonlinear medium
Xinyu Liu(刘欣宇), Chao Sun(孙超), and Dongmei Deng(邓冬梅). Chin. Phys. B, 2021, 30(2): 024202.
[15] 57Fe Mössbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE-Fe-B permanent magnets
Lizhong Zhao(赵利忠), Xuefeng Zhang(张雪峰), Mi Yan(严密), Zhongwu Liu(刘仲武), and Jean-Marc Greneche. Chin. Phys. B, 2021, 30(1): 013302.
No Suggested Reading articles found!