Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 024501    DOI: 10.1088/1674-1056/23/2/024501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

On the modeling of synchronized flow in cellular automaton models

Jin Cheng-Jiea, Wang Weia, Jiang Ruib
a School of Transportation, Southeast University of China, Nanjing 210096, China;
b School of Engineering Science, University of Science and Technology of China, Hefei 230026, China
Abstract  In this paper, we further analyze our cellular automaton (CA) traffic flow model. By changing some parameters, the characteristics of our model can be significantly varied, ranging from the features of phase transitions to the number of traffic phases. We also review the other CA models based on Kerner’s three-phase traffic theory. By comparisons, we find that the core concepts for modeling the synchronized flow in these models are similar. Our model can be a good candidate for modeling the synchronized flow, since there is enough flexibility in our framework.
Keywords:  traffic flow      cellular automaton      synchronized flow      three-phase traffic theory  
Received:  21 March 2013      Revised:  17 May 2013      Accepted manuscript online: 
PACS:  45.70.Vn (Granular models of complex systems; traffic flow)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB725400) and the Scientific Research Foundation of Graduate School of Southeast University, China.
Corresponding Authors:  Jin Cheng-Jie     E-mail:  yitaikongtiao@gmail.com
About author:  45.70.Vn; 05.40.-a; 02.60.Cb

Cite this article: 

Jin Cheng-Jie, Wang Wei, Jiang Rui On the modeling of synchronized flow in cellular automaton models 2014 Chin. Phys. B 23 024501

[1] Chowdhury D, Santen L and Schadschneider A 2000 Phys. Rep. 329 199
[2] Helbing D 2001 Rev. Mod. Phys. 73 1067
[3] Kerner B S 2004 Physica A 333 379
[4] Kerner B S and Rehborn H 1996 Phys. Rev. E 53 R1297
[5] Kerner B S and Rehborn H 1996 Phys. Rev. E 53 R4275
[6] Kerner B S and Rehborn H 1997 Phys. Rev. Lett. 79 4030
[7] Kerner B S 1998 Phys. Rev. Lett. 81 3797
[8] Treiber M and Helbing D 1999 J. Phys. A: Math. Gen. 32 L17
[9] Treiber M, Hennecke A and Helbing D 2000 Phys. Rev. E 62 1805
[10] Helbing D and Treiber M 2002 Coop. Trans. Dyn. 1 1.2.1–2.2.4
[11] Schönhof M and Helbing D 2007 Transp. Sci. 41 135
[12] Schönhof M and Helbing D 2009 Transp. Res. B 43 784
[13] Helbing D, Treiber M, Kesting A and Schönhof M 2009 Eur. Phys. J. B 69 583
[14] Treiber M and Helbing D 2003 Phys. Rev. E 68 046119
[15] Nishinari K, Treiber M and Helbing D 2003 Phys. Rev. E 68 067101
[16] Treiber M, Kesting A and Helbing D 2006 Phys. Rev. E 74 016123
[17] Treiber M, Kesting A and Helbing D 2010 Transp. Res. B 44 983
[18] Kerner B S and Klenov S L 2008 J. Phys. A: Math. Theor. 41 215101
[19] Kerner B S, Klenov S L and Schreckenberg M 2011 Phys. Rev. E 84 046110
[20] Jin C J, Wang W, Jiang R, Zhang H M and Wang H 2013 Phys. Rev. E 87 012815
[21] Kerner B S and Klenov S L 2002 J. Phys. A: Math. Gen. 35 L31
[22] Kerner B S, Klenov S L and Wolf D E 2002 J. Phys. A: Math. Gen. 35 9971
[23] Jin C J, Wang W, Jiang R and Gao K 2010 J. Stat. Mech. P03018
[24] Jin C J, Wang W, Gao K and Jiang R 2011 Chin. Phys. B 20 064501
[25] Jin C J and Wang W 2011 Physica A 390 4184
[26] Barlovic R, Santen L, Schadschneider A and Schreckenberg M 1998 Eur. Phys. J. B 5 793
[27] Li X B, Wu Q S and Jiang R 2001 Phys. Rev. E 64 066128
[28] Kerner B S 2002 Phys. Rev. E 65 046138
[29] Knospe W, Santen L, Schadschneider A and Schreckenberg M 2000 J. Phys. A: Math. Gen. 33 L477
[30] Knospe W, Santen L, Schadschneider A and Schreckenberg M 2004 Phys. Rev. E 70 016115
[31] Jiang R and Wu Q S 2003 J. Phys. A: Math. Gen. 36 381
[32] Jiang R and Wu Q S 2004 J. Phys. A: Math. Gen. 37 8197
[33] Jiang R and Wu Q S 2005 Eur. Phys. J. B 46 581
[34] Gao K, Jiang R, Hu S X, Wang B H and Wu Q S 2007 Phys. Rev. E 76 026105
[35] Gao K, Jiang R, Wang B H and Wu Q S 2009 Physica A 388 3233
[36] Tian J F, Jia B, Li X G, Zhao X M and Gao Z Y 2009 Physica A 388 4827
[37] Zheng L, Ma S F and Zhong S Q 2011 Physica A 390 1072
[38] Lee H K, Barlovic R, Schreckenberg M and Kim D 2004 Phys. Rev. Lett. 92 238702
[39] Zhao B H, Hu M B, Jiang R and Wu Q S 2009 Chin. Phys. Lett. 26 118902
[40] Lárraga M E and Alvarez-lcaza L 2010 Physica A 389 5425
[41] Kokubo S, Tanimoto J and Hagishima A 2011 Physica A 390 561
[42] Neto J P L, Lyra M L and da Silva C R 2011 Physica A 390 3558
[43] Jia B, Li X G, Chen T, Jiang R and Gao Z Y 2011 Transportmetica 7 127
[44] Tian J F, Yuan Z Z, Treiber M, Jia B and Zhang W Y 2012 Physica A 391 3129
[45] Tian J F, Yuan Z Z, Jia B, Fan H Q and Wang T 2012 Phys. Lett. A 376 2781
[46] Li X L, Kuang H, Song T, Dai S Q and Li Z P 2008 Chin. Phys. B 17 2366
[47] Jiang R, Jin W L and Wu Q S 2008 Chin. Phys. B 17 829
[48] Zhuang Q, Jia B and Li X G 2009 Chin. Phys. B 18 3271
[49] He H D, Lu W Z and Dong L Y 2011 Chin. Phys. B 20 040514
[50] Chen X Q, Li L, Jiang R and Yang X M 2010 Chin. Phys. Lett. 27 074501
[51] Zhao B H, Hu M B, Jiang R and Wu Q S 2009 Chin. Phys. Lett. 26 118902
[52] Kong L J, Liu M R and Kuang H 2004 Acta Phys. Sin. 53 4138 (in Chinese)
[53] Kong L J, Liu M R and Kuang H 2004 Acta Phys. Sin. 53 2894 (in Chinese)
[54] Dai S Q, Xue Y and Lei L 2003 Acta Phys. Sin. 52 2121 (in Chinese)
[55] Zhao X M, Xie D F and Gao Z Y 2008 Chin. Phys. B 17 4440
[56] Kerner B S 2012 Phys. Rev. E 85 036110
[1] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[2] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[3] Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘). Chin. Phys. B, 2020, 29(3): 034501.
[4] Analyzing floor-stair merging flow based on experiments and simulation
Yu Zhu(朱萸), Tao Chen(陈涛), Ning Ding(丁宁), Wei-Cheng Fan(范维澄). Chin. Phys. B, 2020, 29(1): 010401.
[5] A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior
Xiaoyong Ni(倪晓勇), Hong Huang(黄弘). Chin. Phys. B, 2019, 28(9): 098901.
[6] A macroscopic traffic model based on weather conditions
Zawar H. Khan, Syed Abid Ali Shah, T. Aaron Gulliver. Chin. Phys. B, 2018, 27(7): 070202.
[7] Urban rail departure capacity analysis based on a cellular automaton model
Wen-Jun Li(李文俊), Lei Nie(聂磊). Chin. Phys. B, 2018, 27(7): 070204.
[8] A new control method based on the lattice hydrodynamic model considering the double flux difference
Shunda Qin(秦顺达), Hongxia Ge(葛红霞), Rongjun Cheng(程荣军). Chin. Phys. B, 2018, 27(5): 050503.
[9] Traffic flow velocity disturbance characteristics and control strategy at the bottleneck of expressway
Jun-Wei Zeng(曾俊伟), Yong-Sheng Qian(钱勇生), Xu-Ting Wei(魏谞婷), Xiao Feng(冯骁). Chin. Phys. B, 2018, 27(12): 124502.
[10] Cellular automaton modeling of pedestrian movement behavior on an escalator
Fu-Rong Yue(岳芙蓉), Juan Chen(陈娟), Jian Ma(马剑), Wei-Guo Song(宋卫国), Siu-Ming Lo(卢兆明). Chin. Phys. B, 2018, 27(12): 124501.
[11] Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel
Li-Yun Dong(董力耘), Dong-Kai Lan(蓝冬恺), Xiang Li(李翔). Chin. Phys. B, 2016, 25(9): 098901.
[12] Stability analysis of traffic flow with extended CACC control models
Ya-Zhou Zheng(郑亚周), Rong-Jun Cheng(程荣军), Siu-Ming Lo(卢兆明), Hong-Xia Ge(葛红霞). Chin. Phys. B, 2016, 25(6): 060506.
[13] A new traffic model on compulsive lane-changing caused by off-ramp
Xiao-He Liu(刘小禾), Hung-Tang Ko(柯鸿堂), Ming-Min Guo(郭明旻), Zheng Wu(吴正). Chin. Phys. B, 2016, 25(4): 048901.
[14] A new cellular automata model of traffic flow with negative exponential weighted look-ahead potential
Xiao Ma(马骁), Wei-Fan Zheng(郑伟范), Bao-Shan Jiang(江宝山), Ji-Ye Zhang(张继业). Chin. Phys. B, 2016, 25(10): 108902.
[15] Effects of abnormal excitation on the dynamics of spiral waves
Min-Yi Deng(邓敏艺), Xue-Liang Zhang(张学良), Jing-Yu Dai(戴静娱). Chin. Phys. B, 2016, 25(1): 010504.
No Suggested Reading articles found!