Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 124208    DOI: 10.1088/1674-1056/23/12/124208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A simple model of suppressing stimulated Brillouin scattering in optical fiber with frequency-modulated laser

Hu Xiao-Yang, Chen Wei, Tu Xiao-Bo, Meng Zhou
Department of Optic Information Science and Technology, College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  A simple model is developed to study the mechanism of stimulated Brillouin scattering (SBS) suppression with frequency-modulated laser in optical fiber. By taking into account the laser frequency distribution along the fiber induced by frequency modulation, the average effective Brillouin gain is calculated to determine the SBS threshold. Experimental results show agreement with the numerical analysis. The application for SBS suppression in interferometric fiber sensing system is also discussed in this paper. The results show that the maximum input power can be increased effectively by frequency modulation method.
Keywords:  stimulated Brillouin scattering      frequency modulation      interferometric fiber sensing     
Received:  24 May 2014      Published:  15 December 2014
PACS:  42.65.Es (Stimulated Brillouin and Rayleigh scattering)  
  78.35.+c (Brillouin and Rayleigh scattering; other light scattering)  
Fund: Project supported by the National Natural Science Foudation of China (Grant No. 6177073).
Corresponding Authors:  Meng Zhou     E-mail:  zhoumeng6806@163.com

Cite this article: 

Hu Xiao-Yang, Chen Wei, Tu Xiao-Bo, Meng Zhou A simple model of suppressing stimulated Brillouin scattering in optical fiber with frequency-modulated laser 2014 Chin. Phys. B 23 124208

[1]Mocofanescu A, Wang L, Jain R, Shaw K, Gavrielides A, Peterson P and Sharma M 2005 Opt. Express 13 2019
[2]Chen W, Meng Z, Zhou H J and Luo H 2012 Chin. Phys. B 21 034212
[3]Liu Y, Lü Z and Dong Y 2009 Chin. Opt. Lett. 7 29
[4]Hirose A, Takushima Y and Okoshi T 1991 J. Opt. Commun. 12 82
[5]Chen W and Meng Z 2010 Chin. Opt. Lett. 8 1124
[6]Hansryd J, Dross F, Westlund M, Andrekson P and Knudsen S 2001 J. Lightwave Technol. 19 1691
[7]Yoshizawa N and Imai T 1993 J. Lightwave Technol. 11 1518
[8]Shiraki K, Ohashi M and Tateda M 1996 J. Lightwave Technol. 14 50
[9]Agrawal G P 2000 Nonlinear Fiber Optics, 4th edn. (Beijing Publishing House of Electronics Industry) p. 246
[10]Smith R G 1972 Appl. Opt. 11 2489
[1] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[2] Polarization dependence of gain and amplified spontaneous Brillouin scattering noise analysis for fiber Brillouin amplifier
Kuan-Lin Mu(穆宽林), Jian-Ming Shang(商建明), Li-Hua Tang(唐丽华), Zheng-Kang Wang(王正康), Song Yu(喻松), Yao-Jun Qiao(乔耀军). Chin. Phys. B, 2019, 28(9): 094216.
[3] Effect of stimulated Brillouin scattering on the gain saturation of distributed fiber Raman amplifier and its suppression by phase modulation
Zhang Yi-Chi, Chen Wei, Sun Shi-Lin, Meng Zhou. Chin. Phys. B, 2015, 24(9): 094209.
[4] Effect of water temperature on pulse duration and energy of stimulated Brillouin scattering
Zhang Lei, Zhang Dong, Li Jin-Zeng. Chin. Phys. B, 2013, 22(7): 074207.
[5] A new method for measuring the threshold of stimulated Brillouin scattering
Zhu Xue-Hua, Lü Zhi-Wei, Wang Yu-Lei. Chin. Phys. B, 2012, 21(7): 074205.
[6] A 168-W high-power single-frequency amplifier in an all-fiber configuration
Xiao Hu,Dong Xiao-Lin,Zhou Pu,Xu Xiao-Jun,Zhao Guo-Min. Chin. Phys. B, 2012, 21(3): 034207.
[7] Stimulated Brillouin scattering-induced phase noise in an interferometric fiber sensing system
Chen Wei,Meng Zhou,Zhou Hui-Juan,Luo Hong. Chin. Phys. B, 2012, 21(3): 034212.
[8] Bursting behaviours in cascaded stimulated Brillouin scattering
Liu Zhan-Jun, He Xian-Tu, Zheng Chun-Yang, Wang Yu-Gang. Chin. Phys. B, 2012, 21(1): 015202.
[9] The 260-W coherent beam combining of two compact fibre amplifier chains
Wang Xiao-Lin, Ma Yan-Xing, Zhou Pu, He Bing, Xue Yu-Hao, Liu Chi, Li Zhen, Xiao Hu, Xu Xiao-Jun, Zhou Jun, Liu Ze-Jin, Zhao Yi-Jun. Chin. Phys. B, 2011, 20(11): 114203.
[10] Stimulated supercontinuum-radiation generation of carbon disulfide by all-trans-β-carotene fluorescence enhancement effect in liquid core optical fibre
Men Zhi-Wei, Fang Wen-Hui, Li Zuo-Wei, Qu Guan-Nan, Gao Shu-Qin, Lu Guo-Hui, Yang Jian-Ge, Sun Cheng-Lin. Chin. Phys. B, 2010, 19(8): 084206.
[11] Laser-induced damage on large-aperture fused silica gratings
Han Wei, Huang Wan-Qing, Wang Fang, Li Ke-Yu, Feng Bin, Li Fu-Quan, Jing Feng, Zheng Wan-Guo. Chin. Phys. B, 2010, 19(10): 106105.
[12] Investigation on the effect of beam divergence angle upon output waveform based on stimulated Brillouin scattering optical limiting
Hasi Wu-Li-Ji, Lu Huan-Huan, Gong Sheng, Fu Mei-Ling, Lü Zhi-Wei, Lin Dian-Yang, He Wei-Ming. Chin. Phys. B, 2009, 18(7): 2835-2838.
[13] Measurement of stimulated Brillouin scattering (SBS) threshold based on waveform variation of SBS optical limiting
Hasi Wu-Li-Ji, Lu Huan-Huan, Fu Mei-Ling, Gong Sheng, Lü Zhi-Wei, Lin Dian-Yang, He Wei-Ming, Gao Wei. Chin. Phys. B, 2009, 18(12): 5362-5365.
[14] Photonic crystal fibre Brillouin laser based on Bragg grating Fabry--Perot cavity
Geng Dan, Yang Dong-Xiao, Shen Guo-Feng, Zhang Xian-Min. Chin. Phys. B, 2008, 17(3): 1020-1024.
[15] Investigation on improving characteristics of two-cell SBS system with CCl4/C2H5OH liquid mixture
Hasi Wu-Li-Ji, Lü Zhi-Wei, Li Qiang, He Wei-Ming. Chin. Phys. B, 2007, 16(5): 1385-1390.
No Suggested Reading articles found!