Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 087703    DOI: 10.1088/1674-1056/22/8/087703
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The magnetoelectric properties of A-or B-site-doped PbVO3 films:A first-principles study

Chen Xing-Yuan, Chen Li-Juan, Zhao Yu-Jun
Department of Physics and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
Abstract  We employ first-principles calculations to study the magnetic and ferroelectric properties of PbVO3 with A (XA=Ca, Sr, Bi, Ba, and La) or B (XB=Ti, Cr, Mn, Fe, Co, Ni, and Cu) site dopants, with the aim of ascertaining a large ferroelectric polarization and a long magnetic order, or even a macro ferri/ferromagnetism, which is critical to their potential applications in magnetoelectronic devices. It is found that Pb7XAV8O24 (XA=Ca, Sr, and Ba,) are inclined to maintain the spin glass and large ferroelectric polarization. The degenerated G-and C-antiferromagnetic (AFM) couplings in the ideal PbVO3 are broken up, accompanied by the loss of ferroelectric properties, when La or Bi is doped at the A site. In contrast, the above-mentioned 3d transition elements doped at the B site of PbVO3 could induce remnant magnetic moments and preserve the large ferroelectric polarization, except for Ni and Cu. The Fe or Cr at the B site clearly remove the degenerated G-and C-AFM coupling, but the nonmagnetic Ti cannot do so. For the Mn, Co, Ni, or Cu doped at the B sites, even the two-dimensional AFM ordering in PbVO3 is destabilized. The various doping effects are further discussed with inner strain and charge transfer.
Keywords:  multiferroic      magnetism      ferroelectric      doping     
Received:  21 October 2012      Published:  27 June 2013
PACS:  77.55.Nv (Multiferroic/magnetoelectric films)  
  75.85.+t (Magnetoelectric effects, multiferroics)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174082) and the Education Foundation of Science and Technology Innovation of the Ministry of Education, China (Grant No. 708070).
Corresponding Authors:  Zhao Yu-Jun     E-mail:  zhaoyj@scut.edu.cn

Cite this article: 

Chen Xing-Yuan, Chen Li-Juan, Zhao Yu-Jun The magnetoelectric properties of A-or B-site-doped PbVO3 films:A first-principles study 2013 Chin. Phys. B 22 087703

[1] Schmid H 1994 Ferroelectrics Ferroelectrics 162 317
[2] Hill N A 2000 J. Phys. Chem. B 104 6694
[3] Ramesh R and Spaldin N A 2007 Nat. Mater. 6 21
[4] Shpanchenko R V, Chernaya V V, Tsirlin A A, Chizhov P S, Sklovsky D E, Antipov E V, Khlybov E P, Pomjakushin V, Balagurov A M, Medvedeva J E, Kaul E E and Geibel C 2004 Chem. Mater. 16 3267
[5] Belik A A, Azuma M, Saito T, Shimakawa Y and Takano M 2005 Chem. Mater. 17 269
[6] Singh D J 2006 Phys. Rev. B 73 094102
[7] Martin L W, Zhan Q, Suzuki Y, Ramesh R, Chi M F, Browning N, Mizoguchi T and Kreisel J 2007 Appl. Phys. Lett. 90 062903
[8] Oka K, Yamada I, Azuma M, Takeshita S, Satoh K H, Koda A, Kadono R, Takano M and Shimakawa Y 2008 Inorg. Chem. 47 7355
[9] Kumar A, Podraza N J, Denev S, Li J, Martin L W, Chu Y H, Ramesh R, Collins R W and Gopalan V 2008 Appl. Phys. Lett. 92 231915
[10] Uratani Y, Shishidou T, Ishii F and Oguchi T 2005 Jpn. J. Appl. Phys. 44 7130
[11] Kumar A, Martin L W, Denev S, Kortright J B, Suzuki Y, Ramesh R and Gopalan V 2007 Phys. Rev. B 75 060101
[12] Tsirlin A A, Belik A A, Shpanchenko R V, Antipov E V, Takayama-Muromachi E and Rosner H 2008 Phys. Rev. B 77 092402
[13] Uratani Y, Shishidou T and Oguchi T 2009 J. Phys. Soc. Jpn. 78 084709
[14] Ju S and Cai T Y 2008 Appl. Phys. Lett. 93 251904
[15] Lawes G and Srinivasan G 2011 J. Phys. D: Appl. Phys. 44 243001
[16] Solovyev IV 2012 Phys. Rev. B 85 054420
[17] Sosnowska I, Neumaier T P and Steichele E 1982 J. Phys. C 15 4835
[18] Bai F M, Wang J L, Wuttig M, Li J F, Wang N G, Pyatakov A P, Zvezdin A K, Cross L E and Viehland D 2005 Appl. Phys. Lett. 86 32511
[19] Picozzi S and Ederer C 2009 J. Phys: Condens. Matter 21 303201
[20] Baettig P, Ederer C and Spaldin N A 2005 Phys. Rev. B 72 214105
[21] Nechache R, Harnagea C, Pignolet A, Normandin F, Veres T, Carignan L P and Menard D 2006 Appl. Phys. Lett. 89 102902
[22] Khomchenko V A, Kopcewicz M, Lopes A M L, Pogorelov Y G, Araujo J P, Vieira J M and Kholkin A L 2008 J. Phys: D: Appl. Phys. 41 102003
[23] Chang H and Zhao Y G 2011 Chin. Phys. Lett. 28 067503
[24] Ma Z Z, Li J Q, Tian Z M, Qiu Y and Yuan S L 2012 Chin. Phys. B 21 107503
[25] Khomchenko V A, Kiselev D A, Vieira J M, Jian L, Kholkin A L, Lopes A M L, Pogorelov Y G, Araujo J P and Maglione M 2008 J. Appl. Phys. 103 024105
[26] Wang D H, Goh W C, Ning M and Ong C K 2006 Appl. Phys. Lett. 88 212907
[27] Zhang S T, Zhang Y, Lu M H, Du C L, Chen Y F, Liu Z G, Zhu Y Y, Ming N B and Pan X Q 2006 Appl. Phys. Lett. 88 162901
[28] Chen X Y, Tian R Y, Wu J M, Zhao Y J, Ding H C and Duan C G 2011 J. Phys: Condens. Matter 23 326005
[29] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[30] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[31] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[32] Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467
[33] Ederer C and Spaldin N A 2006 Phys. Rev. B 74 024102
[34] Ederer C, Harris T and Kovacik R 2011 Phys. Rev. B 83 054110
[35] Kingsmith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651
[36] Dean J A 1979 Lange's Handbook of Chemistry, 12th edn. (New York: McGraw-Hill) pp. 3-124
[37] Hafner J 2008 J. Comput. Chem. 29 2044
[38] Anderson P W 1959 Phys. Rev. 115 2
[39] Tsuchiya T, Katsumata T, Ohba T and Inaguma Y 2009 J. Ceram. Soc. Jpn. 117 102
[1] Recent advances, perspectives, and challenges inferroelectric synapses
Bo-Bo Tian(田博博), Ni Zhong(钟妮), Chun-Gang Duan(段纯刚). Chin. Phys. B, 2020, 29(9): 097701.
[2] Enhanced ferromagnetism and magnetoelectric response in quenched BiFeO3-based ceramics
Qi Pan(潘祺), Bao-Jin Chu(初宝进). Chin. Phys. B, 2020, 29(8): 087501.
[3] High efficiency sub-nanosecond electro-optical Q-switched laser operating at kilohertz repetition frequency
Xin Zhao(赵鑫), Zheng Song(宋政), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2020, 29(8): 084205.
[4] Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer
Shixin Hou(侯世欣), Biao Shi(石标), Pengyang Wang(王鹏阳), Yucheng Li(李玉成), Jie Zhang(张杰), Peirun Chen(陈沛润), Bingbing Chen(陈兵兵), Fuhua Hou(侯福华), Qian Huang(黄茜), Yi Ding(丁毅), Yuelong Li(李跃龙), Dekun Zhang(张德坤), Shengzhi Xu(许盛之), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹). Chin. Phys. B, 2020, 29(7): 078801.
[5] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[6] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[7] Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread
Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋). Chin. Phys. B, 2020, 29(6): 066101.
[8] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[9] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[10] Microstructure and ferromagnetism ofheavily Mn doped SiGe thin flims
Huanming Wang(王焕明), Sen Sun(孙森), Jiayin Xu(徐家胤), Xiaowei Lv(吕晓伟), Yuan Wang(汪渊), Yong Peng(彭勇), Xi Zhang(张析), Gang Xiang(向钢). Chin. Phys. B, 2020, 29(5): 057504.
[11] Mg acceptor activation mechanism and hole transport characteristics in highly Mg-doped AlGaN alloys
Qing-Jun Xu(徐庆君), Shi-Ying Zhang(张士英), Bin Liu(刘斌), Zhen-Hua Li(李振华), Tao Tao(陶涛), Zi-Li Xie(谢自力), Xiang-Qian Xiu(修向前), Dun-Jun Chen(陈敦军), Peng Chen(陈鹏), Ping Han(韩平), Ke Wang(王科), Rong Zhang(张荣), You-Liao Zheng(郑有炓). Chin. Phys. B, 2020, 29(5): 058103.
[12] Topology and ferroelectricity in group-V monolayers
Mutee Ur Rehman, Chenqiang Hua(华陈强), Yunhao Lu(陆赟豪). Chin. Phys. B, 2020, 29(5): 057304.
[13] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[14] Investigation of active-region doping on InAs/GaSb long wave infrared detectors
Su-Ning Cui(崔素宁), Dong-Wei Jiang(蒋洞微), Ju Sun(孙矩), Qing-Xuan Jia(贾庆轩), Nong Li(李农), Xuan Zhang(张璇), Yong Li(李勇), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2020, 29(4): 048502.
[15] High-performance synaptic transistors for neuromorphic computing
Hai Zhong(钟海), Qin-Chao Sun(孙勤超), Guo Li(李果), Jian-Yu Du(杜剑宇), He-Yi Huang(黄河意), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Chen Ge(葛琛), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(4): 040703.
No Suggested Reading articles found!