Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 077301    DOI: 10.1088/1674-1056/22/7/077301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Rainbow trapping based on long-range plasmonic Bragg gratings at telecom frequencies

Chen Lina, Zhang Tiana, Li Xunb
a Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
b Department of Electrical and Computer Engineering, McMaster University, Ontario L8S4L8, Canada
Abstract  The group velocity of long-range surface plasmon polaritons (LRSPPs) in a wide frequency bandwidth at infrared frequencies is significantly reduced by dielectric gratings of graded thickness on both sides of a thin metal film. This structure can reduce the propagation loss of slow surface plasmons in “rainbow trapping” systems based on plasmonic Bragg gratings. Compared with dielectric gratings of graded thickness on a single side of a metal film, the proposed structure is able to guide slow light with a much longer propagation distance for the same group index factor. Finite-difference time-domain simulation results show that slow LRSPPs with the group velocity of c/14.5 and the propagation distance of 10.4 μm are achieved in dielectric gratings of uniform thickness on both sides of a thin metal film at 1.62 μm.
Keywords:  surface plasmon polaritons      slow light      photonic integrated circuits  
Received:  13 January 2013      Revised:  14 March 2013      Published:  01 June 2013
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.25.Bs (Wave propagation, transmission and absorption)  
  52.40.Db (Electromagnetic (nonlaser) radiation interactions with plasma)  
  42.79.Gn (Optical waveguides and couplers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11104093) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2011QN041).
Corresponding Authors:  Chen Lin     E-mail:  chen.lin@mail.hust.edu.cn

Cite this article: 

Chen Lin, Zhang Tian, Li Xun Rainbow trapping based on long-range plasmonic Bragg gratings at telecom frequencies 2013 Chin. Phys. B 22 077301

[1] Vlasov Y A, O'Boyle M, Hamann H F and McNab S J 2005 Nature 438 65
[2] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[3] Ozbay Ekmel 2006 Science 311 189
[4] Liang H M, Fang L, Wang J Q, Li M, Niu X Y and Du J L 2009 Chin. Phys. B 18 4870
[5] Wang Y, He X J, Wu Y M, Wu Q, Mei J S, Li L W, Yang F X, Zhao T and Li L W 2010 Acta Phys. Sin. 59 6921 (in Chinese)
[6] Shen Y, Fan D H, Fu J W and Yu G P 2011 Acta Phys. Sin. 60 117302 (in Chinese)
[7] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[8] Chen L and Wang G P 2009 Opt. Express 17 3903
[9] Chen L, Zhou X Y and Wang G P 2008 Appl. Phys. B 92 127
[10] Tsakmakidis K L, Boardman A D and Hess O 2007 Nature 450 397
[11] Gan Q, Fu Z, Ding Y and Bartoli F 2008 Phys. Rev. Lett. 100 256803
[12] Gan Q, Ding Y and Bartoli F 2009 Phys. Rev. Lett. 102 056801
[13] Chen L, Wang G P, Gan Q and Bartoli F J 2009 Phys. Rev. B 80 161106
[14] Chen L, Wang G P, Gan Q and Bartoli F J 2010 Appl. Phys. Lett. 97 153115
[15] Chen L, Wang G P, Li X, Li W, Shen Y, Lai J and Chen S 2011 Appl. Phys. B 104 653
[16] Gan Q, Gao Y, Wagner K, Vezenov D, Ding Y J and Bartoli F J 2011 Proc. Natl. Acad. Sci. USA 108 5169
[17] Lu W, Huang Y, Casse B, Banyal R and Sridhar S 2010 Appl. Phys. Lett. 96 211112
[18] Park J, Kim K Y, Lee I M, Na H, Lee S Y and Lee B 2010 Opt. Express 18 598
[19] Jang M and Atwater H 2011 Phys. Rev. Lett. 107 207401
[20] Reza A, Dignam M and Hughes S 2008 Nature 455 E10
[21] Wuestner S, Pusch A, Tsakmakidis K L, Hamm J M and Hess O 2010 Phys. Rev. Lett. 105 127401
[22] Berini P 2009 Adv. Opt. Photon. 1 484
[23] Chen L and Wang G 2007 Appl. Phys. B 89 573
[24] Chen L, Li X, Wang G P, Li W, Chen S H, Xiao L and Gao D S 2012 J. Ligtwave Technol. 30 163
[25] Chen L, Zhang T, Li X and Huang W P 2012 Opt. Express 20 20535
[26] Chen L, Li X and Wang G P 2013 Opt. Commun. 291 400
[27] Johnson P B and Christy R 1972 Phys. Rev. B 6 4370
[28] Mori D and Baba T 2005 Opt. Express 13 9398
[29] Baba T, Mori D, Inoshita K and Kuroki Y 2004 J. Sel. Top. Quant. 10 484
[30] Sandtke M and Kuipers L 2007 Nat. Photon. 1 573
[1] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[2] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[3] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[4] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[5] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[6] Compound-induced transparency in three-cavity coupled structure
Hao-Ye Qin(秦昊烨), Yi-Heng Yin(尹贻恒), and Ming Ding(丁铭). Chin. Phys. B, 2020, 29(12): 124208.
[7] Properties of metal-insulator-metal waveguide loop reflector
Hu Long(龙虎), Xuan-Ke Zeng(曾选科), Yi Cai(蔡懿), Xiao-Wei Lu(陆小微), Hong-Yi Chen(陈红艺), Shi-Xiang Xu(徐世祥), Jing-Zhen Li(李景镇). Chin. Phys. B, 2019, 28(9): 094215.
[8] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
[9] Characteristic plume morphologies of atmospheric Ar and He plasma jets excited by a pulsed microwave hairpin resonator
Zhao-Quan Chen(陈兆权), Ben-Kuan Zhou(周本宽), Huang Zhang(张煌), Ling-Li Hong(洪伶俐), Chang-Lin Zou(邹长林), Ping Li(李平), Wei-Dong Zhao(赵卫东), Xiao-Dong Liu(刘晓东), Olga Stepanova, A A Kudryavtsev. Chin. Phys. B, 2018, 27(5): 055202.
[10] Gap plasmon-enhanced photoluminescence of monolayer MoS2 in hybrid nanostructure
Le Yu(余乐), Di Liu(刘頔), Xiao-Zhuo Qi(祁晓卓), Xiao Xiong(熊霄), Lan-Tian Feng(冯兰天), Ming Li(李明), Guo-Ping Guo(郭国平), Guang-Can Guo(郭光灿), Xi-Feng Ren(任希锋). Chin. Phys. B, 2018, 27(4): 047302.
[11] Multi-window transparency and fast-slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms
Wan-Ying Wei(魏晚迎), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(3): 034204.
[12] Geometrical condition for observing Talbot effect in plasmonics infinite metallic groove arrays
Afshari-Bavil Mehdi, Xiao-Ping Lou(娄小平), Ming-Li Dong(董明利), Chuan-Bo Li(李传波), Shuai Feng(冯帅), Parsa Saviz, Lian-Qing Zhu(祝连庆). Chin. Phys. B, 2018, 27(12): 124204.
[13] Coupling-induced spectral splitting for plasmonic sensing with ultra-high figure of merit
Hua Lu(陆华), Yi-Cun Fan(范奕村), Si-Qing Dai(戴思清), Dong Mao(毛东), Fa-Jun Xiao(肖发俊), Peng Li(李鹏), Jian-Lin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 117302.
[14] Hybrid sub-gridding ADE-FDTD method of modeling periodic metallic nanoparticle arrays
Tu-Lu Liang(梁图禄), Wei Shao(邵维), Xiao-Kun Wei(魏晓琨), Mu-Sheng Liang(梁木生). Chin. Phys. B, 2018, 27(10): 100204.
[15] Negative-index dispersion and accidental mode degeneracy inan asymmetric spoof–insulator–spoof waveguide
Li-li Tian(田莉莉), Jian-long Liu(刘建龙), Ke-ya Zhou(周可雅), Yang Gao(高扬), Shu-tian Liu(刘树田). Chin. Phys. B, 2017, 26(7): 078401.
No Suggested Reading articles found!