Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 054208    DOI: 10.1088/1674-1056/22/5/054208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamics of optical rogue waves in inhomogeneous nonlinear waveguides

Zhang Jie-Fanga, Jin Mei-Zhena, He Ji-Dab, Lou Ji-Huib, Dai Chao-Qingc
a Zhejiang University of Media and Communications, Hangzhou 310018, China;
b Institute of Nonlinear Physics, Zhejiang Normal University, Jinhua 321004, China;
c School of Sciences, Zhejiang Agriculture and Forestry University, Lin'an 311300, China
Abstract  We propose a unified theory to construct exact rogue wave solutions of the (2+1)-dimensional nonlinear Schrödinger equation with varying coefficients. And then the dynamics of the first- and the second-order optical rogues are investigated. Finally, the controllability of the optical rogue propagating in inhomogeneous nonlinear waveguides is discussed. By properly choosing the distributed coefficients, we demonstrate analytically that rogue waves can be restrained or even be annihilated, or emerge periodically and sustain forever. We also figure out the center-of-mass motion of the rogue waves.
Keywords:  rogue wave      (2+1)-dimensional nonlinear Schrödinger equation      inhomogeneous nonlinear waveguides  
Received:  26 June 2012      Revised:  08 October 2012      Published:  01 April 2013
PACS:  42.65.-k (Nonlinear optics)  
  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11072219 and 11005092).
Corresponding Authors:  Zhang Jie-Fang     E-mail:  jfzhang2002@yahoo.com.cn

Cite this article: 

Zhang Jie-Fang, Jin Mei-Zhen, He Ji-Da, Lou Ji-Hui, Dai Chao-Qing Dynamics of optical rogue waves in inhomogeneous nonlinear waveguides 2013 Chin. Phys. B 22 054208

[1] Kharif C, Pelinovsky E and Slunyaev A 2009 Rogue Waves in the Ocean, Observation, Theories and Modeling (New York: Springer)
[2] Draper L 1965 Marine Observer 35 193
[3] Peregrine D H 1983 J. Austral. Math. Soc. Ser. B 25 16
[4] Akhmediev N, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675
[5] Ankiewicz A, Devine N and Akhmediev N 2009 Phys. Lett. A 373 3997
[6] Ruban V, Kodama Y and Ruderman M 2010 Eur. Phys. J. Spec. Top. 18 5
[7] Osborne A R 2009 Nonlinear Ocean Waves (New York: Academic Press)
[8] Müller P, Garrett Ch and Osborne A 2005 Oceanography. 18 66
[9] Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 450 1054
[10] Solli D R, Ropers C and Jalali B 2008 Phys. Rev. Lett. 101 233902
[11] Dudley J M, Genty G, Dias F, Kibler B and Akhmediev N 2009 Opt. Express 17 21497
[12] Dudley J M, Finot C, Millot G, Garnier J, Genty G, Agafontsev D and Dias F 2010 Eur. Phys. J. Spec. Top. 185 125
[13] Jalali B, Solli D R, Goda K, Tsia K and Ropers C 2010 Eur. Phys. J. Spec. Top. 185 145
[14] Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G, Akhmediev N and Dudley J M 2010 Nature Phys. 6 1
[15] Majus D, Jukna V, Valiulis G, Faccio D and Dubietis1 A 2011 Phys. Rev. A 83 025802
[16] Zaviyalov A, Egorov O, Iliew R and Lederer F 2012 Phys. Rev. A 85 013828
[17] Moslem W M, Sabry R, El-Labany S K and Shukla1 P K 2011 Phys. Rev. E 84 066402
[18] Ganshin A N, Efimov V B, Kolmakov G V, Mezhov-Deglin L P and McClintock P V E 2008 Phys. Rev. Lett. 101 065303
[19] Yang G, Li L and Jia S T 2012 Phys. Rev. E 85 046608
[20] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
[21] Bludov Y V, Konotop V V and Akhmediev N 2009 Phys. Rev. A 80 033610
[22] Ruderman M S 2010 Eur. Phys. J. Spec. Top. 185 57
[23] Montina A, Bortolozzo U, Residori S and Arecchi F T 2009 Phys. Rev. Lett. 103 173901
[24] Vergeles S and Turitsyn S K 2011 Phys. Rev. A 83 061801
[25] Stenflo L and Marklund M 2010 J. Plasma Phys. 76 293
[26] Yan Z Y 2010 Commun. Theor. Phys. 54 947
[27] Yan Z Y, Konotop V V and Akhmediev N 2010 Phys. Rev. E 82 036610
[28] Yan Z Y 2011 Phys. Lett. A 375 4274
[29] Yan Z Y 2011 J. Math. Anal. Appl. 380 689
[30] Wang G Y, He J S and Li Y S 2011 Commun. Theor. Phys. 56 995
[31] Xu S W, He J S and Wang L H 2011 J. Phys. A: Math. Theor. 44 305203
[32] Wang X C, He J S and Li Y S 2011 Commun. Theor. Phys. 56 631
[33] Akhmediev N, Ankiewicz A, and Soto-Crespo J M 2009 Phys. Rev. E 80 026601
[34] Kivshar Y S and Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystals (San Diego: Academic)
[35] Tian Q, Yang Q, Dai C Q and Zhang J F 2011 Opt. Commun. 284 2222
[36] Hao R Y, Li L, Li Z H, Yang R C and Zhou G S 2005 Opt. Commun. 245 383
[37] Zhang J F, Tian Q, Wang Y Y, Dai C Q and Wu L 2010 Phys. Rev. A 81 023832
[38] Wu L, Li L and Zhang J F 2008 Phys. Rev. A 78 013838
[39] Wu L, Zhang J F, Li L, Tian Q and Porsezian K 2008 Opt. Express 16 6352
[40] Dai C Q, Wang Y Y and Wang X G 2011 J. Phys. A: Math. Theor. 44 155203
[41] Dai C Q, Wang Y Y and Yan C J 2010 Opt. Commun. 283 1489
[42] Wu L, Li L,Zhang J F, Mihalache D, Malomed B A and Liu W M 2010 Phys. Rev. A 81 061805
[43] Dai C Q, Zhang J F and Zhu S Q 2010 Europhys. Lett. 92 24005
[44] Zhong W P, Xie R H, Bellić M, Petrović N, Chen G and Yi L 2008 Phys. Rev. A 78 023821
[45] Zhong W P and Belić M 2009 Phys. Rev. A 79 023804
[46] Akhediev N, Soto-Crespo J M and Ankiweicz A 2009 Phys. Lett. A 373 2137
[47] Ankiewicz A, Clarkson P A and Akhmediev N 2010 J. Phys. A: Math. Theor. 43 122002
[1] Lump, lumpoff and predictable rogue wave solutions to a dimensionally reduced Hirota bilinear equation
Haifeng Wang(王海峰), Yufeng Zhang(张玉峰). Chin. Phys. B, 2020, 29(4): 040501.
[2] Lax pair and vector semi-rational nonautonomous rogue waves fora coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[3] Dynamical interactions between higher-order rogue waves and various forms of n-soliton solutions (n → ∞) of the (2+1)-dimensional ANNV equation
Md Fazlul Hoque, Harun-Or-Roshid, Fahad Sameer Alshammari. Chin. Phys. B, 2020, 29(11): 114701.
[4] Dynamics of three nonisospectral nonlinear Schrödinger equations
Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军). Chin. Phys. B, 2019, 28(2): 020202.
[5] Formation mechanism of asymmetric breather and rogue waves in pair-transition-coupled nonlinear Schrödinger equations
Zai-Dong Li(李再东), Yang-yang Wang(王洋洋), Peng-Bin He(贺鹏斌). Chin. Phys. B, 2019, 28(1): 010504.
[6] Symmetry and asymmetry rogue waves in two-component coupled nonlinear Schrödinger equations
Zai-Dong Li(李再东), Cong-Zhe Huo(霍丛哲), Qiu-Yan Li(李秋艳), Peng-Bin He(贺鹏斌), Tian-Fu Xu(徐天赋). Chin. Phys. B, 2018, 27(4): 040505.
[7] A more general form of lump solution, lumpoff, and instanton/rogue wave solutions of a reduced (3+1)-dimensional nonlinear evolution equation
Panfeng Zheng(郑攀峰), Man Jia(贾曼). Chin. Phys. B, 2018, 27(12): 120201.
[8] Interactions of ion acoustic multi-soliton and rogue wave with Bohm quantum potential in degenerate plasma
M S Alam, M G Hafez, M R Talukder, M Hossain Ali. Chin. Phys. B, 2017, 26(9): 095203.
[9] Localized waves of the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics
Tao Xu(徐涛), Yong Chen(陈勇), Ji Lin(林机). Chin. Phys. B, 2017, 26(12): 120201.
[10] Soliton and rogue wave solutions of two-component nonlinear Schrödinger equation coupled to the Boussinesq equation
Cai-Qin Song(宋彩芹), Dong-Mei Xiao(肖冬梅), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2017, 26(10): 100204.
[11] Rogue-wave pair and dark-bright-rogue wave solutions of the coupled Hirota equations
Wang Xin, Chen Yong. Chin. Phys. B, 2014, 23(7): 070203.
[12] On the investigation of nonlinear waves of the Hirota and the Maxwell–Bloch equation in nonlinear optics
Li Chuan-Zhong, He Jing-Song, K. Porsezian. Chin. Phys. B, 2013, 22(4): 044208.
[13] Analytical solutions and rogue waves in (3+1)-dimensional nonlinear Schrödinger equation
Ma Zheng-Yi,Ma Song-Hua. Chin. Phys. B, 2012, 21(3): 030507.
No Suggested Reading articles found!