Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050401    DOI: 10.1088/1674-1056/22/5/050401
GENERAL Prev   Next  

The stability of a shearing viscous star with an electromagnetic field

M. Sharifa, M. Azamaa b
a Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan;
b Division of Science and Technology, University of Education, Township Campus, Lahore-54590, Pakistan
Abstract  We analyze the role of the electromagnetic field for the stability of a shearing viscous star with spherical symmetry. Matching conditions are given for the interior and the exterior metrics. We use a perturbation scheme to construct the collapse equation. The range of instability is explored in Newtonian and post Newtonian (pN) limits. We conclude that the electromagnetic field diminishes the effects of the shearing viscosity in the instability range and makes the system more unstable in both Newtonian and post Newtonian approximations.
Keywords:  gravitational collapse      electromagnetic field      instability  
Received:  24 September 2012      Revised:  06 November 2012      Accepted manuscript online: 
PACS:  04.20.-q (Classical general relativity)  
  04.25.Nx (Post-Newtonian approximation; perturbation theory; related Approximations)  
  04.40.Dg (Relativistic stars: structure, stability, and oscillations)  
  04.40.Nr (Einstein-Maxwell spacetimes, spacetimes with fluids, radiation or classical fields)  
Corresponding Authors:  M. Sharif, M. Azama     E-mail:;

Cite this article: 

M. Sharif, M. Azama The stability of a shearing viscous star with an electromagnetic field 2013 Chin. Phys. B 22 050401

[1] Sharif M and Abbas G 2010 Astrophys. Space Sci. 327 285
[2] Sharif M and Abbas G 2011 J. Phys. Soc. Jpn. 80 104002
[3] Sharif M and Abbas G 2013 Chin. Phys. B 22 030401
[4] Eddington A S 1926 Internal Constitution of the Stars (Cambrigde: Cambrigde University Press)
[5] Glendenning N 2000 Compact Stars (Berlin: Springer)
[6] Rosseland S 1924 Mon. Not. R. Astron. Soc. 84 720
[7] de la Cruz V and Israel W 1967 Nuovo Cimento A 51 744
[8] Bekenstein J 1970 Phys. Rev. D 4 2185
[9] Olson E and Bailyn M 1976 Phys. Rev. D 13 2204
[10] Mashhoon B and Partovi M 1979 Phys. Rev. D 20 2455
[11] Zhang J L, Chau W Y and Deng T Y 1982 Astrophys. Space Sci. 88 81
[12] Ghezzi C 2005 Phys. Rev. D 72 104017
[13] Barreto W, Rodrguez B, Rosales L and Serrano O 2007 Gen. Relativ. Gravit. 39 537
[14] Chandrasekhar S 1964 Astrophys. J. 140 417
[15] Herrera L, Santos N O and Le Denmat G 1989 Mon. Not. R. Astron. Soc. 237 257
[16] Chan R, Kichenassamy S, Le Denmat G and Santos N O 1989 Mon. Not. R. Astron. Soc. 239 91
[17] Chan R, Herrera L and Santos N O 1993 Mon. Not. R. Astron. Soc. 265 533
[18] Chan R, Herrera L and Santos N O 1994 Mon. Not. R. Astron. Soc. 267 637
[19] Herrera L, Santos N O and Le Denmat G 2012 Gen. Relativ. Gravit. 44 1143
[20] Chan R 2000 Mon. Not. R. Astron. Soc. 316 588
[21] Horvat D, Ilijic S and Marunovic A 2011 Class. Quantum Grav. 28 25009
[22] Hernandez H, Nunez L A and Percoco U 1999 Class. Quantum Grav. 16 871
[23] Hernandez H and Nunez L A 2004 Can. J. Phys. 82 29
[24] Sharif M and Kausar H R 2012 Astrophys. Space Sci. 337 805
[25] De Felice F, Yu Y and Fang Z 1995 Mon. Not. R. Astron. Soc. 277 L17
[26] De Felice F, Siming L and Yunqiang Y 1999 Class. Quantum Grav. 16 2669
[27] De Felice F, Siming L and Yunqiang Y 2003 Phys. Rev. D 68 084004
[28] Stettner R 1973 Ann. Phys. 80 212
[29] Glazer I 1976 Ann. Phys. 101 594
[30] Mak M, Dobson P and Harko T 2001 Europhys. Lett. 55 310
[31] Misner C W and Sharp D 1964 Phys. Rev. 136 B571
[32] Giuliani A and Rothman T 2008 Gen. Relativ. Gravit. 40 1427
[33] Andreasson H 2009 Commun. Math. Phys. 288 715
[34] Bohmer C and Harko T 2007 Gen. Relativ. Gravit. 39 757
[35] Buchdahl H 1959 Phys. Rev. 116 1027
[36] Sharif M and Azam M 2012 JCAP 02 043
[37] Darmois G 1927 Memorial des Sciences Mathematiques (Gautheir-Villars)
[38] Harrison B K, Thorne K S, Wakano M and Wheeler J A 1965 Gravitation Theory and Garvitational Collapse (Chicago: University of Chicago Press)
[39] Pinheiro G and Chan R 2012 Gen. Relativ. Gravit. 45 213
[40] Ernesto F E and Simeone C 2011 Phys. Rev. D 83 104009
[1] A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊). Chin. Phys. B, 2021, 30(4): 044702.
[2] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[3] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[4] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[5] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[6] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[7] Negative bias-induced threshold voltage instability and zener/interface trapping mechanism in GaN-based MIS-HEMTs
Qing Zhu(朱青), Xiao-Hua Ma(马晓华), Yi-Lin Chen(陈怡霖), Bin Hou(侯斌), Jie-Jie Zhu(祝杰杰), Meng Zhang(张濛), Mei Wu(武玫), Ling Yang(杨凌), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047304.
[8] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[9] Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces
Zhiyuan Li(李志远), Lifeng Wang(王立锋), Junfeng Wu(吴俊峰), Wenhua Ye(叶文华). Chin. Phys. B, 2020, 29(3): 034704.
[10] The E×B drift instability in Hall thruster using 1D PIC/MCC simulation
Zahra Asadi, Mehdi Sharifian, Mojtaba Hashemzadeh, Mahmood Borhani Zarandi, Hamidreza Ghomi Marzdashti. Chin. Phys. B, 2020, 29(2): 025204.
[11] Characterization and optimization of AlGaN/GaN metal-insulator semiconductor heterostructure field effect transistors using supercritical CO2/H2O technology
Meihua Liu(刘美华), Zhangwei Huang(黄樟伟), Kuan-Chang Chang(张冠张), Xinnan Lin(林信南), Lei Li(李蕾), and Yufeng Jin(金玉丰). Chin. Phys. B, 2020, 29(12): 127101.
[12] Gravity-capillary waves modulated by linear shear flow in arbitrary water depth
Shaofeng Li(李少峰), Jinbao Song(宋金宝), and Anzhou Cao(曹安州). Chin. Phys. B, 2020, 29(12): 124702.
[13] Jeans gravitational instability with κ-deformed Kaniadakis distribution in Eddington-inspired Born–Infield gravity
Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), Hui Chen(陈辉), and San-Qiu Liu(刘三秋)$. Chin. Phys. B, 2020, 29(11): 110401.
[14] Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), and Ying-Jun Li(李英骏). Chin. Phys. B, 2020, 29(11): 115202.
[15] Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling
Jiayu Xie(谢家玉), Zhihao Deng(邓志豪), Xia Chang(昌霞), Bing Tang(唐炳). Chin. Phys. B, 2019, 28(7): 077501.
No Suggested Reading articles found!