Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 047302    DOI: 10.1088/1674-1056/22/4/047302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Pure spin polarized transport based on Rashba spin–orbit interaction through the Aharonov–Bohm interferometer embodied four-quantum-dot ring

Wu Li-Jun (吴丽君)a, Han Yu (韩宇)b
a School of Science, Shenyang Ligong University, Shenyang 110159, China;
b Department of Physics, Liaoning University, Shenyang 110036, China
Abstract  The spin-polarized linear conductance spectrum and current–voltage characteristics in a four-quantum-dot ring embodied into Aharonov–Bohm (AB) interferometer are investigated theoretically by considering a local Rashba spin–orbit interaction. It shows that the spin-polarized linear conductance and the corresponding spin polarization each are a function of magnetic flux phase at zero bias voltage with a period of 2π, and that Hubbard U cannot influence the electron transport properties in this case. When adjusting appropriately structural parameter of inter-dot coupling and dot-lead coupling strength, the electronic spin polarization can reach a maximum value. Furthermore, by adjusting the bias voltages applied to the leads, the spin-up and spin-down currents move in opposite directions and pure spin current exists in the configuration space in appropriate situation. Based on the numerical results, such a model can be applied to the design of spin filter device.
Keywords:  quantum dot ring      Rashba spin–orbit interaction      spin-polarized transport      "bound states in the continuum"      phenomena      bias voltage      Aharonov–Bohm interferometer  
Received:  22 August 2012      Revised:  09 October 2012      Accepted manuscript online: 
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the Natural Science Foundation of Liaoning Province, China (Grant No. 201202085), the National Natural Science Foundation of China (Grant No. 11004138), the Excellent Young Scientists Fund of Liaoning Provence, China (Grant No. LJQ2011020), and the Young Scientists Fund of Shenyang Ligong University (Grant No. 2011QN-04-11).
Corresponding Authors:  Wu Li-Jun, Han Yu     E-mail:  wulijun20070915@163.com; hanyu@lnu.edu.cn

Cite this article: 

Wu Li-Jun (吴丽君), Han Yu (韩宇) Pure spin polarized transport based on Rashba spin–orbit interaction through the Aharonov–Bohm interferometer embodied four-quantum-dot ring 2013 Chin. Phys. B 22 047302

[1] Zutic I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[2] Wang B, Wang J and Guo H 2003 Phys. Rev. B 67 092408
[3] Dong B, Cui H L and Lei X L 2005 Phys. Rev. Lett. 94 066601
[4] Tang C S, Mal'shukov A G and Chao K A 2005 Phys. Rev. B 71 195314
[5] Sun Q F, Xie X C and Wang J 2008 Phys. Rev. B 77 035327
[6] Chen K W and Chang C R 2008 Phys. Rev. B 78 235319
[7] Wang S X, Yuan A G and Du J 2010 Acta Phys. Sin. 59 2760 (in Chinese)
[8] Wang S X, Du J and Yuan A G 2010 Acta Phys. Sin. 59 2767 (in Chinese)
[9] Xiong S J and Liu P 2009 Chin. Phys. B 18 5414
[10] Sun Q F, Wang J and Guo H 2005 Phys. Rev. B 71 165310
[11] Lu H F and Gou Y 2007 Phys. Rev. B 76 045120
[12] Rashba E I 1960 Sov. Phys. Solid State 2 1109
[13] Bychkov Y A and Rashba E I 1984 J. Phys. C 17 6039
[14] Li B X and Chi F 2009 Superlatt. Microstrucut. 45 39
[15] Li S S and Xia J B 2008 Appl. Phys. Lett. 92 022102
[16] Chi F and Li S S 2006 J. Appl. Phys. 100 113703
[17] Lü H F and Guo Y 2007 Appl. Phys. Lett. 91 092128
[18] Chi F and Zheng J 2008 Appl. Phys. Lett. 92 062106
[19] Chi F, Zheng J and Sun L L 2008 Appl. Phys. Lett. 92 172104
[20] Han Y, Gong W J and Wei G Z 2009 Commun. Theor. Phys. 52 1117
[21] Han Y, Gong W J and Wei G Z 2009 Phys. Status Solidi B 246 2140
[22] Han Y, Gong W J and Wei G Z 2009 Phys. Status Solidi B 246 1634
[23] Wu L J, Han Y, Gong W J and Tan T Y 2011 Acta Phys. Sin. 60 107303 (in Chinese)
[24] Gong W, Han Y and Wei G 2009 Solid State Commun. 149 1831
[25] Jouho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528
[26] Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
[27] Wingreen N S and Meir Y 1994 Phys. Rev. B 49 11040
[28] Gong W J, Zheng Y, Liu Y and Lü T 2006 Phys. Rev. B 73 245329
[29] Heary R J, Han J E and Zhu L 2008 Phys. Rev. B 77 115132
[30] Bulka B R and Stefański P 2001 Phys. Rev. Lett. 86 5128
[31] Hofstetter W, König J and Schhoeller H 2001 Phys. Rev. Lett. 87 156803
[32] Ding G H, Kim C K and Nahm K 2005 Phys. Rev. B 71 205313
[33] Karrasch C, Enss T and Meden V 2006 Phys. Rev. B 73 235337
[34] Gong W J, Han Y, Xie X F and Wei G Z 2010 Phys. Status Solidi B 247 2222
[1] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[2] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[3] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[4] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[5] Constraints on the kinetic energy of type-Ic supernova explosion from young PSR J1906+0746 in a double neutron star candidate
Yi-Yan Yang(杨佚沿), Cheng-Min Zhang(张承民), Jian-Wei Zhang(张见微), and De-Hua Wang (王德华). Chin. Phys. B, 2021, 30(6): 068703.
[6] A short review of the recent progresses in the study of the cuprate superconductivity
Tao Li(李涛). Chin. Phys. B, 2021, 30(10): 100508.
[7] Picosecond terahertz pump-probe realized from Chinese terahertz free-electron laser
Chao Wang(王超), Wen Xu(徐文), Hong-Ying Mei(梅红樱), Hua Qin(秦华), Xin-Nian Zhao(赵昕念), Hua Wen(温华), Chao Zhang(张超), Lan Ding(丁岚), Yong Xu(徐勇), Peng Li(李鹏), Dai Wu(吴岱), Ming Li(黎明). Chin. Phys. B, 2020, 29(8): 084101.
[8] Nonlinear resonances phenomena in a modified Josephson junction model
Pernel Nguenang, Sandrine Takam Mabekou, Patrick Louodop, Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2020, 29(12): 120501.
[9] Imprint of transient electron localization in H2+ using circularly-polarized laser pulse
Jianghua Luo(罗江华), Jun Li(李军), and Huafeng Zhang(张华峰). Chin. Phys. B, 2020, 29(12): 123201.
[10] Collapses-revivals phenomena induced by weak magnetic flux in diamond chain
Na-Na Chang(常娜娜), Wen-Quan Jing(景文泉), Yu Zhang(张钰), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2020, 29(1): 010306.
[11] Model of output characteristics of giant magnetoresistance (GMR) multilayer sensor
Jiao-Feng Zhang(张教凤), Zheng-Hong Qian(钱正洪), Hua-Chen Zhu(朱华辰), Ru Bai(白茹), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2019, 28(8): 087501.
[12] Critical behavior and magnetocaloric effect in magnetic Weyl semimetal candidate Co2-xZrSn
Tianlin Yu(于天麟), Xiaoyun Yu(余骁昀), En Yang(杨恩), Chang Sun(孙畅), Xiao Zhang(张晓), Ming Lei(雷鸣). Chin. Phys. B, 2019, 28(6): 067501.
[13] Basic features of the multiscale interaction between tearing modes and slab ion-temperature-gradient modes
L Wei(魏来), Z X Wang(王正汹), J Q Li(李继全), Z Q Hu(胡朝清), Y Kishimoto(岸本泰明). Chin. Phys. B, 2019, 28(12): 125203.
[14] Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laser pulses
Zehua Wu(吴泽华), Nan Zhang(张楠), Xiaonong Zhu(朱晓农), Liqun An(安力群), Gangzhi Wang(王刚志), Ming Tan(谭明). Chin. Phys. B, 2018, 27(7): 077901.
[15] Ultrafast electron diffraction
Xuan Wang(王瑄), Yutong Li(李玉同). Chin. Phys. B, 2018, 27(7): 076102.
No Suggested Reading articles found!