Abstract Recently, individual reduced-symmetry metal nanostructures and their plasmonic properties have been studied extensively. However, little attention has been paid to the approach to fabricating ordered reduced-symmetry metal nanostructure array. In this paper, a novel perforated silver nanocap array with high surface-enhanced Raman scattering (SERS) activity and fluorescence suppression is reported. The array is fabricated by electron beam evaporating Ag onto the perforated barrier layer side of hard anodization (HA) anodic aluminum oxide (AAO) template. The morphology and optical property of the perforated silver nanocap array are characterized by atomic force microscope (AFM), scanning electron microscope (SEM) and absorption spectra. The results of SERS measurements reveal that the perforated silver nanocap array offers high SERS activity and fluorescence suppression compared with imperforated silver nanocap array.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.